- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Verify the following properties for the given values of a, b, c. $a=-3, b=1$ and $c=-4$.Property 1: $a\div (b+c) ≠(a÷b) +c$
Property 2: $a\times (b+c) =(a\times b)+(a\times c)$
Property 3: $a\times (b-c)=(a\times b) -(a\times c)$
Given :
$a=-3, b=1$ and $c=-4$.
To do :
We have to verify the following properties, for the given values of a, b, c.
Property 1: $a\div (b+c) ≠ (a÷b) +c$
Property 2: $a\times (b+c) =(a\times b)+(a\times c)$
Property 3: $a\times (b-c)=(a\times b) -(a\times c)$
Solution :
Property 1: $a\div (b+c) ≠ (a÷b) +c$
LHS
$a÷(b+c) = -3÷(1+(-4)) = -3÷(1-4) = -3÷-3 = \frac{-3}{-3} = 1$.
RHS
$(a÷b) +c = (-3÷1)+(-4) = (-3)-4 = -7$.
$LHS ≠ RHS$
Therefore,
$a÷(b+c) ≠(a÷b) +c$.
Hence verified.
Property 2: $a\times (b+c) =(a\times b)+(a\times c)$
LHS
$a\times (b+c) = (-3)\times (1+(-4))=(-3)\times (1-4) = (-3)\times (-3) = 9$
RHS
$(a\times b)+(a\times c) = (-3\times 1)+(-3\times -4)=(-3)+12 = 12-3 = 9$
$LHS = RHS$
Therefore,
$a\times (b+c) =(a\times b)+(a\times c)$.
Hence verified.
Property 3: $a\times (b-c)=(a\times b) -(a\times c)$
LHS
$a\times (b-c) = (-3) \times (1-(-4)) = (-3)\times (1+4)=(-3)\times 5 = -15$
RHS
$(a\times b) -(a\times c) = (-3\times 1)-(-3\times -4) = (-3)-(12) = -(3+12) = -15$
$LHS = RHS$
Therefore,
$a\times (b-c)=(a\times b) -(a\times c)$.
Hence verified.
- Related Articles
- Verify that a[$b+c$] is equal to [$a\times b$]+[$a\times c$] if a=12 ,b=-4, c=2
- If $1176 = 2^a \times 3^b \times 7^c$, find $a, b$ and $c$.
- If $1176 = 2^a \times 3^b \times 7^c$, find the values of $a, b$ and $c$. Hence, compute the value of $2^a \times 3^b \times 7^{-c}$ as a fraction.
- Find the values of a, b and c.$4879 = (4\times a)+(8\times b)+(7\times c)+9$
- Express the following in exponential form:$(i)$. $6\times6\times6\times6$$(ii)$. $t\times t$$(iii)$. $b\times b\times b\times b$$(iv)$. $5\times5\times7\times7\times7$$(v)$. $2\times2\times a\times a$$(vi)$. $a\times a\times a\times c\times c\times c\times c\times d$
- In \( \triangle A B C, \angle A \) is obtuse, \( P B \perp A C, \) and \( Q C \perp A B \). Prove that \( B C^{2}=\left(A C \times C P +A B \times B Q\right) \).
- Prove that:\( \left(\frac{x^{a}}{x^{b}}\right)^{a^{2}+a b+b^{2}} \times\left(\frac{x^{b}}{x^{c}}\right)^{b^{2}+b c+c^{2}} \times\left(\frac{x^{c}}{x^{a}}\right)^{c^{2}+c a+a^{2}}=1 \)
- Prove that:\( \left(\frac{x^{a}}{x^{-b}}\right)^{a^{2}-a b+b^{2}} \times\left(\frac{x^{b}}{x^{-c}}\right)^{b^{2}-b c+c^{2}} \times\left(\frac{x^{c}}{x^{-a}}\right)^{c^{2}-c a+a^{2}}=1 \)
- In \( \triangle A B C, \angle A \) is obtuse, \( P B \perp A C, \) and \( Q C \perp A B \). Prove that \( A B \times A Q=A C \times A P \).
- Evaluate\( \left(\frac{4}{9} a b c^{3}\right) \times\left(\frac{-27}{5} a^{3} b^{2}\right) \times\left(-8 b^{3} c\right) \)
- Verify that $a ÷ (b+c) ≠(a ÷ b) + (a ÷ c)$ for each of the following values of $a,\ b$ and $c$.(a) $a=12,\ b=- 4,\ c=2$(b) $a=(-10),\ b = 1,\ c = 1$
- Prove that:\( \left(\frac{x^{a}}{x^{b}}\right)^{c} \times\left(\frac{x^{b}}{x^{c}}\right)^{a} \times\left(\frac{x^{c}}{x^{a}}\right)^{b}=1 \)
- Evaluate\( \left(\frac{2}{5} a^{2} b\right) \times\left(-15 b^{2} a c\right) \times\left(\frac{-1}{2}\right) c^{2} \)
- Evaluate\( \left(\frac{-4}{7} a^{2} b\right) \times\left(\frac{-2}{3} b^{2} c\right) \times\left(\frac{-7}{6} c^{2} a\right) \)
- Represent number line for the following:\( a) 6+5 \)b) \( 4 \times 5 \)c) \( 7-3 \)d) \( 2 \times 9 \)
