If $1176 = 2^a \times 3^b \times 7^c$, find the values of $a, b$ and $c$. Hence, compute the value of $2^a \times 3^b \times 7^{-c}$ as a fraction.
Given:
$1176 = 2^a \times 3^b \times 7^c$
To do:
We have to find $a, b$ and $c$ and compute the value of $2^a \times 3^{b} \times 7^{-c}$.
Solution:
We know that,
$(a^{m})^{n}=a^{m n}$
$a^{m} \times a^{n}=a^{m+n}$
$a^{m} \div a^{n}=a^{m-n}$
$a^{0}=1$
Therefore,
Prime factorisation of 1176 is,
$1176=2^3\times3^1\times7^2$
This implies,
$2^a \times 3^b \times 7^c=2^3\times3^1\times7^2$
Comparing both sides, we get,
$a=3, b=1, c=2$
This implies,
$2^a \times 3^{b} \times 7^{-c}=2^{3}\times3^{1}\times7^{-2}$
$=\frac{2^3\times3^1}{7^2}$
$=\frac{8\times3}{49}$
$=\frac{24}{49}$
The values of $a, b$ and $c$ are 3, 1 and 2 respectively. The value of $2^a \times 3^{b} \times 7^{-c}$ is $\frac{24}{49}$.
- Related Articles
- If $1176 = 2^a \times 3^b \times 7^c$, find $a, b$ and $c$.
- Find the values of a, b and c.$4879 = (4\times a)+(8\times b)+(7\times c)+9$
- Verify the following properties for the given values of a, b, c. $a=-3, b=1$ and $c=-4$.Property 1: $a\div (b+c) ≠ (a÷b) +c$Property 2: $a\times (b+c) =(a\times b)+(a\times c)$Property 3: $a\times (b-c)=(a\times b) -(a\times c)$
- In which of the following expressions, prime factorisation has been done?(a) \( 24=2 \times 3 \times 4 \)(b) $56 = 7 \times 2 \times 2 \times 2$(c) $70 = 2 \times 5 \times 7$ (d) $54 = 2 \times 3 \times 9$
- Evaluate\( \left(\frac{-4}{7} a^{2} b\right) \times\left(\frac{-2}{3} b^{2} c\right) \times\left(\frac{-7}{6} c^{2} a\right) \)
- Find the following product.\( \left(\frac{7}{9} a b^{2}\right) \times\left(\frac{15}{7} a c^{2} b\right) \times\left(\frac{-3}{5} a^{2} c\right) \)
- Find the products of the following monomials.a. \( (-6) x^{2} \times 7 x y \)b. \( 2 a b \times(-6) a b \)c. \( \left(-4 x^{2} y^{2}\right) \times 3 x^{2} y^{2} \)d. \( 9 x y z \times 2 z^{3} \)
- Find the value of $a \times b$ if \( \frac{3+2 \sqrt{3}}{3-2 \sqrt{3}}=a+b \sqrt{3} \).
- If $2^x \times 3^y \times 5^z = 2160$, find $x, y$ and $z$. Hence, compute the value of $3^x \times 2^{-y} \times 5^{-z}$.
- Check which of the following satisfy the commutative property of multiplication.(a)$(2\times10) + (2\times7) = 2 \times (10+7)$(b) $10\times2 = 2\times 10$(c) $3\times8 = 8\times 3$
- Express the following in exponential form:$(i)$. $6\times6\times6\times6$$(ii)$. $t\times t$$(iii)$. $b\times b\times b\times b$$(iv)$. $5\times5\times7\times7\times7$$(v)$. $2\times2\times a\times a$$(vi)$. $a\times a\times a\times c\times c\times c\times c\times d$
- Simplify the following:a. $3 \times 10^2$ b. $2^5 \times 5^3$c. $0 \times 10^4$
- Verify that a[$b+c$] is equal to [$a\times b$]+[$a\times c$] if a=12 ,b=-4, c=2
- Represent number line for the following:\( a) 6+5 \)b) \( 4 \times 5 \)c) \( 7-3 \)d) \( 2 \times 9 \)
- Simplify and write the answers in exponential forms.(a) \( 3 \times 3^{10} \)(b) \( 5^{2} \times 5^{7} \)(c) \( (-7)^{2} \times(-7)^{7} \)(d) \( 27^{3} \p 3^{9} \)(e) \( \left(25^{0}+5^{0}\right) \times 5^{0} \)(f) \( \left(2^{0} \p 3^{0}\right) \times 4^{0} \)
Kickstart Your Career
Get certified by completing the course
Get Started