- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
If the points $(x+1,\ 2),\ (1,\ x+2)$ and $( \frac{1}{x+1},\ \frac{2}{x+1})$ are collinear, then find $x$.
Given: Points $(x+1,\ 2),\ (1,\ x+2)$ and $( \frac{1}{x+1},\ \frac{2}{x+1})$ are collinear.
To do: To find the value of $x$.
Solution:
As given, points $(x+1,\ 2),\ (1,\ x+2)$ and $( \frac{1}{x+1},\ \frac{2}{x+1})$ are collinear.
$\therefore$ Slope of $BA=$ Slope of $CB$
$\Rightarrow \frac{x+2-2}{1-x-1}=\frac{\frac{2}{x+1}-( x+2)}{\frac{1}{x+1}-1}$
$\Rightarrow \frac{x}{-x}=\frac{\frac{2-( x+1)( x+2)}{x+1}}{\frac{1-x-1}{x+1}}$
$\Rightarrow -1=\frac{2-( x+1)( x+2)}{-x}$
$\Rightarrow 2-( x+1)( x+2)=x$
$\Rightarrow 2-x^2-2x-x-2=x$
$\Rightarrow -x^2-3x=x$
$\Rightarrow x+x^2+3x=0$
$\Rightarrow x^2+4x=0$
$\Rightarrow x( x+4)=0$
$\Rightarrow x=0,\ x=-4$
Thus, for $x=0,\ -4$, given points are collinear.
Advertisements