If $\frac{x+1}{y} = \frac{1}{2}, \frac{x}{y-2} = \frac{1}{2}$, find x and y.
Given :
The given terms are $\frac{x+1}{y} = \frac{1}{2}, \frac{x}{y-2} = \frac{1}{2}$.
To do :
We have to find the values of x and y.
Solution :
$\frac{x+1}{y} = \frac{1}{2}$
$2(x+1) = 1(y)$ [cross multiplication]
$2x + 2 = y$
$2x - y + 2 = 0$.................(i)
$\frac{x}{y-2} = \frac{1}{2}$
$2(x) = 1(y-2)$ [cross multiplication]
$2x = y-2$
$2x - y + 2 = 0$
The same line is written in two different forms. Therefore, the given system of equations has infinite solutions.
$(x,y) = (-1,0), (x,y) = (0,2)$ are two different solutions of the given system of equations.
- Related Articles
- Simplify: \( \frac{11}{2} x^{2} y-\frac{9}{4} x y^{2}+\frac{1}{4} x y-\frac{1}{14} y^{2} x+\frac{1}{15} y x^{2}+\frac{1}{2} x y \).
- \Find $(x +y) \div (x - y)$. if,(i) \( x=\frac{2}{3}, y=\frac{3}{2} \)(ii) \( x=\frac{2}{5}, y=\frac{1}{2} \)(iii) \( x=\frac{5}{4}, y=\frac{-1}{3} \)(iv) \( x=\frac{2}{7}, y=\frac{4}{3} \)(v) \( x=\frac{1}{4}, y=\frac{3}{2} \)
- Solve the following pairs of equations by reducing them to a pair of linear equations:(i) \( \frac{1}{2 x}+\frac{1}{3 y}=2 \)\( \frac{1}{3 x}+\frac{1}{2 y}=\frac{13}{6} \)(ii) \( \frac{2}{\sqrt{x}}+\frac{3}{\sqrt{y}}=2 \)\( \frac{4}{\sqrt{x}}-\frac{9}{\sqrt{y}}=-1 \)(iii) \( \frac{4}{x}+3 y=14 \)\( \frac{3}{x}-4 y=23 \)(iv) \( \frac{5}{x-1}+\frac{1}{y-2}=2 \)\( \frac{6}{x-1}-\frac{3}{y-2}=1 \)(v) \( \frac{7 x-2 y}{x y}=5 \)\( \frac{8 x+7 y}{x y}=15 \),b>(vi) \( 6 x+3 y=6 x y \)\( 2 x+4 y=5 x y \)4(vii) \( \frac{10}{x+y}+\frac{2}{x-y}=4 \)\( \frac{15}{x+y}-\frac{5}{x-y}=-2 \)(viii) \( \frac{1}{3 x+y}+\frac{1}{3 x-y}=\frac{3}{4} \)\( \frac{1}{2(3 x+y)}-\frac{1}{2(3 x-y)}=\frac{-1}{8} \).
- Solve the following system of equations:$\frac{5}{x+1} -\frac{2}{y-1}=\frac{1}{2}$$\frac{10}{x+1}+\frac{2}{y-1}=\frac{5}{2}$, where $x≠-1$ and $y≠1$
- Solve the following pairs of equations:\( \frac{1}{2 x}-\frac{1}{y}=-1 \)\( \frac{1}{x}+\frac{1}{2 y}=8, x, y ≠ 0 \)
- If \( 2^{x}=3^{y}=12^{z} \), show that \( \frac{1}{z}=\frac{1}{y}+\frac{2}{x} \).
- (i) \( x^{2}-3 x+5-\frac{1}{2}\left(3 x^{2}-5 x+7\right) \)(ii) \( [5-3 x+2 y-(2 x-y)]-(3 x-7 y+9) \)(iii) \( \frac{11}{2} x^{2} y-\frac{9}{4} x y^{2}+\frac{1}{4} x y-\frac{1}{14} y^{2} x+\frac{1}{15} y x^{2}+ \) \( \frac{1}{2} x y \)(iv) \( \left(\frac{1}{3} y^{2}-\frac{4}{7} y+11\right)-\left(\frac{1}{7} y-3+2 y^{2}\right)- \) \( \left(\frac{2}{7} y-\frac{2}{3} y^{2}+2\right) \)(v) \( -\frac{1}{2} a^{2} b^{2} c+\frac{1}{3} a b^{2} c-\frac{1}{4} a b c^{2}-\frac{1}{5} c b^{2} a^{2}+ \) \( \frac{1}{6} c b^{2} a+\frac{1}{7} c^{2} a b+\frac{1}{8} c a^{2} b \).
- Solve the following system of equations:$\frac{5}{x-1} +\frac{1}{y-2}=2$$\frac{6}{x-1}-\frac{3}{y-2}=1$
- If \( 2^{x}=3^{y}=6^{-z} \), show that \( \frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0 \).
- Solve the following system of equations:$\frac{3}{x+y} +\frac{2}{x-y}=2$$\frac{9}{x+y}-\frac{4}{x-y}=1$
- Solve the following system of equations:$\frac{6}{x+y} =\frac{7}{x-y}+3$$\frac{1}{2(x+y)}=\frac{1}{3(x-y)}$
- Which of the following is not true?A. $( y+\frac{1}{y})^2=( y-\frac{1}{y})^2+4$B. $( y-\frac{1}{y})^2+2=y^2+\frac{1}{y^2}$C. $( y+\frac{1}{y})^2-2=( y-\frac{1}{y})^2$D. $( y-\frac{1}{y})^2-( y+\frac{1}{y})^2=-(2)^2$
- If $\frac{x}{a}cos\theta+\frac{y}{b}sin\theta=1$ and $\frac{x}{a}sin\theta-\frac{y}{b}cos\theta=1$, prove that $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=2$.
- Find the following product.$\frac{1}{2} x y \times \frac{2}{3} x^{2} y z^{2}$
- Find the following products and verify the result for $x = -1, y = -2$:\( \left(\frac{1}{3} x-\frac{y^{2}}{5}\right)\left(\frac{1}{3} x+\frac{y^{2}}{5}\right) \)
Kickstart Your Career
Get certified by completing the course
Get Started