Find the value of $k$, if the points $A( 8,\ 1),\ B( 3,\ -4)$ and $C( 2,\ k)$ are collinear.
Given: Points $A( 8,\ 1),\ B( 3,\ -4)$ and $C( 2,\ k)$ are collinear.
To do: To find the value of $k$.
Solution:
Given points are: $A( 8,\ 1),\ B( 3,\ -4)$ and $C( 2,\ k)$
Two points can be collinear if their slopes are equal
$\Rightarrow$ Slope of $AB=$ Slope of $BC$
We have, slope between two point $=( \frac{y_2-y_1}{x_2-x_1})$
$\Rightarrow$ Slope of $AB=$ Slope of $BC$
$\Rightarrow \frac{-4-1}{3-8}=\frac{k-( -4)}{2-3}$
$\Rightarrow \frac{-5}{-5}=\frac{k+4}{-1}$
$\Rightarrow k+4=-1$
$\Rightarrow k=-5$
Thus, for $k=-5$ the given points are collinear.
- Related Articles
- Find the value of $k$ if points $(k, 3), (6, -2)$ and $(-3, 4)$ are collinear.
- Find the value of $k$, if the points $A (7, -2), B (5, 1)$ and $C (3, 2k)$ are collinear.
- If the points $A( k + 1,\ 28),\ B( 3k,\ 2k + 3)$ and $C( 5k - 1,\ 5k)$ are collinear, then find the value of $k$.
- If the points $( \frac{2}{5},\ \frac{1}{3}),\ ( \frac{1}{2},\ k)$ and $( \frac{4}{5},\ 0)$ are collinear, then find the value of $k$.
- Find the value (s) of $k$ for which the points $(3k – 1, k – 2), (k, k – 7)$ and $(k – 1, -k – 2)$ are collinear.
- Find the values of \( k \) if the points \( \mathrm{A}(k+1,2 k), \mathrm{B}(3 k, 2 k+3) \) and \( \mathrm{C}(5 k-1,5 k) \) are collinear.
- In each of the following find the value of $k$ for which the points are collinear.(i) $(7, -2), (5, 1), (3, k)$(ii) $(8, 1), (k, -4), (2, -5)$
- Find the values of $k$, if the points $A( k+1,\ 2k),\ B( 3k,\ 2k+3)$ and $C( 5k+1,\ 5k)$ are collinear.
- If the points $( -2,\ 3),\ ( 5,\ 1),\ ( 8,\ 2m)$ are collinear then find the value of $m$.
- If the point $P (k – 1, 2)$ is equidistant from the points $A (3, k)$ and $B (k, 5)$, find the values of $k$.
- Find the value of $'a'$ if the points $(a,\ 3),\ (6,\ -2)$ and $(-3,\ 4)$ are collinear.
- If the points $A( -2,\ 1) ,\ B( a,\ b)$ and $C( 4,\ -1)$ are collinear and $a-b=1$, find the values of $a$ and $b$.
- If the points $A (6, 1), B (8, 2), C (9, 4)$ and $D (k, p)$ are the vertices of a parallelogram taken in order, then find the values of $k$ and $p$.
- If the points $A (-1, -4), B (b, c)$ and $C (5, -1)$ are collinear and $2b + c = 4$, find the values of $b$ and $c$.
- If the points $( a,\ b),\ ( 3,\ -5)$ and $( -5,\ -2)$ are collinear. Then find the value of $3a+8b$.
Kickstart Your Career
Get certified by completing the course
Get Started