If the points $A (-1, -4), B (b, c)$ and $C (5, -1)$ are collinear and $2b + c = 4$, find the values of $b$ and $c$.
Given:
Points $A (-1, -4), B (b, c)$ and $C (5, -1)$ are collinear and $2b + c = 4$.
To do:
We have to find the values of $b$ and $c$.
Solution:
Let $A (-1, -4), B (b, c)$ and $C (5, -1)$ be the vertices of $\triangle ABC$.
$2b+c=4$
$\Rightarrow c=4-2b$......(i)
We know that,
If the points $A, B$ and $C$ are collinear then the area of $\triangle ABC$ is zero.
Area of a triangle with vertices $(x_1,y_1), (x_2,y_2), (x_3,y_3)$ is given by,
Area of $\Delta=\frac{1}{2}[x_{1}(y_{2}-y_{3})+x_{2}(y_{3}-y_{1})+x_{3}(y_{1}-y_{2})]$
Therefore,
Area of triangle \( ABC=\frac{1}{2}[-1(c+1)+b(-1+4)+5(-4-c)] \)
\( 0=\frac{1}{2}[-c-1+3b-20-5c] \)
\( 0(2)=(3b-6c-21) \)
\( 0=3(b-2c-7) \)
\( b-2c=7 \)
\( b-2(4-2b)=7 \) (From (i))
\( b-8+4b=7 \)
\( 5b=7+8 \)
\( b=\frac{15}{5} \)
\( b=3 \)
\( c=4-2(3)=4-6=-2 \)
The values of $b$ and $c$ are $3$ and $-2$ respectively.
- Related Articles
- If the points $A( -2,\ 1) ,\ B( a,\ b)$ and $C( 4,\ -1)$ are collinear and $a-b=1$, find the values of $a$ and $b$.
- Find the value of $k$, if the points $A( 8,\ 1),\ B( 3,\ -4)$ and $C( 2,\ k)$ are collinear.
- Find the relation between $x$ and $y$ if the points $A( x,\ y),\ B( -5,\ 7)$ and $C( -4,\ 5)$ are collinear.
- Find the value of $k$, if the points $A (7, -2), B (5, 1)$ and $C (3, 2k)$ are collinear.
- Find the values of $k$, if the points $A( k+1,\ 2k),\ B( 3k,\ 2k+3)$ and $C( 5k+1,\ 5k)$ are collinear.
- Find the relation between $x$ and $y$ if the points $ A( x,\ y) ,\ B( -5,\ 7)$ and $\displaystyle C( -4,\ 5)$ are collinear.
- If the points $A (a, -11), B (5, b), C (2, 15)$ and $D (1, 1)$ are the vertices of a parallelogram $ABCD$, find the values of $a$ and $b$.
- Prove that the points $A (1, 7), B (4, 2), C (-1, -1)$ and $D (-4, 4)$ are the vertices of a square.
- Verify that $a ÷ (b+c) ≠ (a ÷ b) + (a ÷ c)$ for each of the following values of $a,\ b$ and $c$.(a) $a=12,\ b=- 4,\ c=2$(b) $a=(-10),\ b = 1,\ c = 1$
- Prove that the points $P( a,\ b+c),\ Q( b,\ c+a)$ and $R( c,\ a+b)$ are Collinear.
- If the points A(x, 2), B (-3,-4) and C (7-5) are collinear, then the value of x is:$( A) \ -63$ $( B) \ 63$ $( C) \ 60$ $( D) \ -60$
- If $A( –2,\ 1), B( a,\ 0), C( 4,\ b) $and $D( 1,\ 2)$ are the vertices of a parallelogram ABCD, find the values of a and b, Hence find the lengths of its sides.
- Prove that the points $(a, 0), (0, b)$ and $(1, 1)$ are collinear if, $\frac{1}{a} + \frac{1}{b} = 1$.
- If the points $A( k + 1,\ 28),\ B( 3k,\ 2k + 3)$ and $C( 5k - 1,\ 5k)$ are collinear, then find the value of $k$.
- If \( x=a, y=b \) is the solution of the equations \( x-y=2 \) and \( x+y=4 \), then the values of \( a \) and \( b \) are, respectively(A) 3 and 5(B) 5 and 3(C) 3 and 1,b>(D) \( -1 \) and \( -3 \)
Kickstart Your Career
Get certified by completing the course
Get Started