- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Find the value of $k$ if points $(k, 3), (6, -2)$ and $(-3, 4)$ are collinear.
Given:
Points $(k, 3), (6, -2)$ and $(-3, 4)$ are collinear.
To do:
We have to find the value of $k$.
Solution:
Let $A(k, 3), B(6, -2)$ and $C(-3, 4)$ be the vertices of $\triangle ABC$.
We know that,
If the points $A, B$ and $C$ are collinear then the area of $\triangle ABC$ is zero.
Area of a triangle with vertices $(x_1,y_1), (x_2,y_2), (x_3,y_3)$ is given by,
Area of $\Delta=\frac{1}{2}[x_{1}(y_{2}-y_{3})+x_{2}(y_{3}-y_{1})+x_{3}(y_{1}-y_{2})]$
Therefore,
Area of triangle \( ABC=\frac{1}{2}[k(-2-4)+6(4-3)+(-3)(3+2)] \)
\( 0=\frac{1}{2}[k(-6)+6(1)+(-3)(5)] \)
\( 0(2)=(-6k+6-15) \)
\( 0=-6k-9 \)
\( 6k=-9 \)
\( k=\frac{-9}{6} \)
\( k=\frac{-3}{2} \)
The value of $k$ is $\frac{-3}{2}$.
Advertisements