- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Find the value of $'a'$ if the points $(a,\ 3),\ (6,\ -2)$ and $(-3,\ 4)$ are collinear.
Given: Points $(a,\ 3),\ (6,\ -2)$ and $(-3,\ 4)$ are collinear.
To do: To find the value of $a$.
Solution:
$( a,\ 3),\ ( 6,\ -2),\ ( -3,\ 4)$ are collinear
Here $x_1=a,\ y_1=3,\ x_2=6,\ y_2=-2,\ x_3=-3,\ y_3=4$
As given that the points are collinear, then, Area of the triangle formed by the given points should be zero.
$\Rightarrow \frac{1}{2}[x_1( y_2-y_3)+x_2( y_3-y_1)+x_3( y_2-y_1)]$
$\Rightarrow a(-2-4)+6(4-3)+3(3+2)=0$
$\Rightarrow a(-6)+6(1)+(-3)\times5=0$
$\Rightarrow -6a+6-15=0$
$\Rightarrow -6a-9=0$
$\Rightarrow a=\frac{9}{-6}=-\frac{3}{2}$
Advertisements