- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
If the points $( a,\ b),\ ( 3,\ -5)$ and $( -5,\ -2)$ are collinear. Then find the value of $3a+8b$.
Given: Points $( a,\ b),\ ( 3,\ -5)$ and $( -5,\ -2)$ are collinear.
To do: To find the value of $3a+8b$.
Solution:
If three points are collinear then the area of the triangle is zero.
Area of the triangle passing through the points $(x_1,\ y_1),\ (x_2,\ y_2)$ and $(x_3,\ y_3)$ is given by:
$A=\frac{1}{2}[x_1( y_2-y_3)+x_2( y_3-y_1)+x_3( y_1-y_2)]$
Here the points are $( a,\ b),\ ( 3,\ -5)$ and $( -5,\ -2)$ and it is given that these points are collinear therefore the area is zero that is:
$A=\frac{1}{2}[a( -5-( -2))+3( -2-b)+( -5)( b-( -5))]$
$\Rightarrow 0=\frac{1}{2}[a( -5+2)+3( -2-b)-5( b+5)]$
$\Rightarrow 0=\frac{1}{2}[-3a-6-3b-5b-25]$
$\Rightarrow 0=\frac{1}{2}[-3a-8b-31]$
$\Rightarrow 0=-3a-8b-31$
$\Rightarrow 3a+8b=-31$
Hence, $3a+8b=-31$.