Find the value of $k$, if the points $A (7, -2), B (5, 1)$ and $C (3, 2k)$ are collinear.
Given:
Points $A (7, -2), B (5, 1)$ and $C (3, 2k)$ are collinear.
To do:
We have to find the value of $k$.
Solution:
Let $A (7, -2), B (5, 1)$ and $C (3, 2k)$ be the vertices of $\triangle ABC$.
We know that,
If the points $A, B$ and $C$ are collinear then the area of $\triangle ABC$ is zero.
Area of a triangle with vertices $(x_1,y_1), (x_2,y_2), (x_3,y_3)$ is given by,
Area of $\Delta=\frac{1}{2}[x_{1}(y_{2}-y_{3})+x_{2}(y_{3}-y_{1})+x_{3}(y_{1}-y_{2})]$
Therefore,
Area of triangle \( ABC=\frac{1}{2}[7(1-2k)+5(2k+2)+3(-2-1)] \)
\( 0=\frac{1}{2}[7-14k+10k+10+3(-3)] \)
\( 0(2)=(-4k+17-9) \)
\( 0=-4k+8 \)
\( 4k=8 \)
\( k=\frac{8}{4} \)
\( k=2 \)
The value of $k$ is $2$.
- Related Articles
- Find the values of $k$, if the points $A( k+1,\ 2k),\ B( 3k,\ 2k+3)$ and $C( 5k+1,\ 5k)$ are collinear.
- If the points $A( k + 1,\ 28),\ B( 3k,\ 2k + 3)$ and $C( 5k - 1,\ 5k)$ are collinear, then find the value of $k$.
- Find the value of $k$, if the points $A( 8,\ 1),\ B( 3,\ -4)$ and $C( 2,\ k)$ are collinear.
- Find the value of $k$ if points $(k, 3), (6, -2)$ and $(-3, 4)$ are collinear.
- If the points $( \frac{2}{5},\ \frac{1}{3}),\ ( \frac{1}{2},\ k)$ and $( \frac{4}{5},\ 0)$ are collinear, then find the value of $k$.
- If the points $( a,\ b),\ ( 3,\ -5)$ and $( -5,\ -2)$ are collinear. Then find the value of $3a+8b$.
- In each of the following find the value of $k$ for which the points are collinear.(i) $(7, -2), (5, 1), (3, k)$(ii) $(8, 1), (k, -4), (2, -5)$
- Find the value (s) of $k$ for which the points $(3k – 1, k – 2), (k, k – 7)$ and $(k – 1, -k – 2)$ are collinear.
- Find the values of \( k \) if the points \( \mathrm{A}(k+1,2 k), \mathrm{B}(3 k, 2 k+3) \) and \( \mathrm{C}(5 k-1,5 k) \) are collinear.
- If the points $( -2,\ 3),\ ( 5,\ 1),\ ( 8,\ 2m)$ are collinear then find the value of $m$.
- If the points A(x, 2), B (-3,-4) and C (7-5) are collinear, then the value of x is:$( A) \ -63$ $( B) \ 63$ $( C) \ 60$ $( D) \ -60$
- If the points \( (-8,4),(-2,4) \) and \( (5, a) \) are collinear points, find the value of \( a \).
- Find the value of $a$ for which the following points $A( a,\ 3),\ B( 2,\ 1)$ and $C( 5,\ a)$ are collinear. Hence find the equation of the line.
- If the points $A( -2,\ 1) ,\ B( a,\ b)$ and $C( 4,\ -1)$ are collinear and $a-b=1$, find the values of $a$ and $b$.
- If the points $A (-1, -4), B (b, c)$ and $C (5, -1)$ are collinear and $2b + c = 4$, find the values of $b$ and $c$.
Kickstart Your Career
Get certified by completing the course
Get Started