If the points $A (6, 1), B (8, 2), C (9, 4)$ and $D (k, p)$ are the vertices of a parallelogram taken in order, then find the values of $k$ and $p$.
Given:
The points $A (6, 1), B (8, 2), C (9, 4)$ and $D (k, p)$ are the vertices of a parallelogram taken in order.
To do:
We have to find the values of $k$ and $p$.
Solution:
Let the diagonals $AC$ and $BD$ bisect each other at $O$.

Using the mid-point formula, we get,
\( \mathrm{O} \) is the mid-point of \( \mathrm{AC} \)
The coordinates of \( \mathrm{O} \) are \( \left(\frac{6+9}{2}, \frac{1+4}{2}\right) \)
\( =(\frac{15}{2}, \frac{5}{2}) \)
Similarly,
\( \mathrm{O} \) is the mid-point of \( \mathrm{BD} \).
The coordinates of \( \mathrm{O} \) are \( \left(\frac{8+k}{2}, \frac{2+p}{2}\right) \)
On comparing, we get,
\( \frac{8+k}{2}=\frac{15}{2} \)
\( \Rightarrow 8+k=15 \)
\( \Rightarrow k=15-8=7 \)
\( \frac{2+p}{2}=\frac{5}{2} \)
\( \Rightarrow 2+p=5 \)
\( \Rightarrow p=5-2=3 \)
The values of $k$ and $p$ are $7$ and $3$ respectively.
- Related Articles
- If the point $P (k – 1, 2)$ is equidistant from the points $A (3, k)$ and $B (k, 5)$, find the values of $k$.
- Find the value of $k$, if the points $A( 8,\ 1),\ B( 3,\ -4)$ and $C( 2,\ k)$ are collinear.
- The four vertices of a quadrilaterals are $(1, 2), (-5, 6), (7, -4)$ and $(k, -2)$ taken in order. If the area of the quadrilateral is zero, find the value of $k$.
- If $(1, 2), (4, y), (x, 6)$ and $(3, 5)$ are the vertices of a parallelogram taken in order, find $x$ and $y$.
- If the points $A (a, -11), B (5, b), C (2, 15)$ and $D (1, 1)$ are the vertices of a parallelogram $ABCD$, find the values of $a$ and $b$.
- If $A( –2,\ 1), B( a,\ 0), C( 4,\ b) $and $D( 1,\ 2)$ are the vertices of a parallelogram ABCD, find the values of a and b, Hence find the lengths of its sides.
- Find the value of $k$ if points $(k, 3), (6, -2)$ and $(-3, 4)$ are collinear.
- The points $A( 4,\ 7) ,\ B( p,\ 3)$ and $C( 7,\ 3)$ are the vertices of a right triangle, right-angled at B, Find the values of $p$.
- Show that the points $A (1, -2), B (3, 6), C (5, 10)$ and $D (3, 2)$ are the vertices of a parallelogram.
- The line joining the points $(2, 1)$ and $(5, -8)$ is trisected at the points P and Q. If point P lies on the line $2x – y + k = 0$. Find the value of $k$.
- $A (6, 1), B (8, 2)$ and $C (9, 4)$ are three vertices of a parallelogram $ABCD$. If $E$ is the mid-point of $DC$, find the area of $\triangle ADE$.
- A point P divides the line segment joining the points$A( 3,\ -5) $ and $B( -4,\ 8)$ such that$\frac{AP}{PB} =\frac{K}{1}$ . if P lies on the line $x+y=0$, then find the value of K.
- A point $P$ divides the line segment joining the points $A (3, -5)$ and $B (-4, 8)$ such that $\frac{AP}{PB} = \frac{k}{1}$. If $P$ lies on the line $x + y = 0$, then find the value of $k$.
- If the point $P (2, 2)$ is equidistant from the points $A (-2, k)$ and $B (-2k, -3)$, find $k$. Also, find the length of AP.
- Show that the points $A (1, 0), B (5, 3), C (2, 7)$ and $D (-2, 4)$ are the vertices of a parallelogram.
Kickstart Your Career
Get certified by completing the course
Get Started