- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Find the value of $ m $ if the points $ (5,1),(-2,-3) $ and $ (8,2 m) $ are collinear.
Given:
Points \( (5,1),(-2,-3) \) and \( (8,2 m) \) are collinear.
To do:
We have to find the value of $m$.
Solution:
Given points are: $( -2,\ -3),\ ( 5,\ 1),\ ( 8,\ 2m)$.
Here $x_1=-2,\ y_1=-3,\ x_2=5,\ y_2=1,\ x_3=8,\ y_3=2m$
If given points are collinear, then area of the triangle formed by the given points is zero.
$\Rightarrow \frac{1}{2}[x_1( y_2-y_3)+x_2( y_3-y_1)+x_3( y_1-y_2)]=0$
$\Rightarrow \frac{1}{2}[-2( 1-2m)+5( 2m-(-3))+8(-3-1)]=0$
$\Rightarrow \frac{1}{2}[-2+4m+5( 2m+3)+8(-4)]=0$
$\Rightarrow (-2+4m+10m+15-32)=0$
$\Rightarrow (14m-19)=0$
$\Rightarrow 14m=19$
$\Rightarrow m=\frac{19}{14}$
Therefore, the value of $m$ is $\frac{19}{14}$.
- Related Articles
- If the points $( -2,\ 3),\ ( 5,\ 1),\ ( 8,\ 2m)$ are collinear then find the value of $m$.
- Find the value of $k$ if points $(k, 3), (6, -2)$ and $(-3, 4)$ are collinear.
- Find the value of $'a'$ if the points $(a,\ 3),\ (6,\ -2)$ and $(-3,\ 4)$ are collinear.
- If the points $( a,\ b),\ ( 3,\ -5)$ and $( -5,\ -2)$ are collinear. Then find the value of $3a+8b$.
- Find the value of $k$, if the points $A (7, -2), B (5, 1)$ and $C (3, 2k)$ are collinear.
- Find the value of $k$, if the points $A( 8,\ 1),\ B( 3,\ -4)$ and $C( 2,\ k)$ are collinear.
- $\frac{2 m}{3}+8=\frac{m}{2}-1$, find the value of $m$.
- If the points \( (-8,4),(-2,4) \) and \( (5, a) \) are collinear points, find the value of \( a \).
- Find the value of ' \( m \) '$3^{-2} \times 3^{2 m+1}=3^{3}$.
- If the point $P (m, 3)$ lies on the line segment joining the points $A (−\frac{2}{5}, 6)$ and $B (2, 8)$, find the value of $m$.
- If the points $( \frac{2}{5},\ \frac{1}{3}),\ ( \frac{1}{2},\ k)$ and $( \frac{4}{5},\ 0)$ are collinear, then find the value of $k$.
- Determine if the points (1,5) (2,3) and (−2,−11) are collinear.
- The roots of the equation $x^{2} -3x-m( m+3) =0$, where m is a constant, are:$( A) m, m+3$$( B)-m, m+3$$( C)m, -(m+3)$$( D)-m,-(m+3)$
- Find the value of $x$ for which the points $(x,\ -1),\ ( 2,\ 1)$ and $( 4,\ 5)$ are collinear.
- If $l+m+n=9$ and $l^2+m^2+n^2=31$, then find the value of $lm + mn + nl$.

Advertisements