[681.1.9.1] In this section we discuss how the experiment is represented mathematically.
[681.1.9.2] The four mass balance equations (1) are solved numerically.
[681.1.9.3] First, equations (6) and (7)
are used to eliminate and .
[681.1.9.4] The primary variables are and .
[681.1.9.5] The mass balances are discretized in space by cell centered finite volumes with upwind fluxes.
[681.1.9.6] They are discretized in time with a first order implicit fully coupled scheme.
[681.1.9.7] The corresponding system of nonlinear equations is solved with the Newton-Raphson method.
[681.1.9.8] The whole scheme is implemented in Matlab.
[681.1.9.9] The simulation is run with a resolution of one cell per centimeter,
i.e. with collocation points.
[681.1.9.10] Details of the algorithm are given elsewhere [3].

Parameters | Units | Values | ||
---|---|---|---|---|

Pa | ||||

Pa | ||||

, |

[681.1.9.11] Dirichlet boundary conditions for the pressure of the percolating water phase are imposed at the lower boundary (), where pressure is determined by the water reservoir. [681.1.9.12] Dirichlet boundary conditions for the atmospheric pressure of the percolating air phase are chosen at the upper boundary () of the column. [681.1.9.13] All the other boundaries are impermeable so that the flux across them must vanish.

[681.1.9.14] The initial conditions are , , , for all [681.1.9.15] Initial conditions for the pressures are not required because of the implicit formulation. [681.1.9.16] Before the protocol for the pressure is started, the system is given one day under hydrostatic water pressure conditions to equilibrate.

[681.1.10.1] The parameters for the simulation are given in Table 1. [681.1.10.2] They were obtained by fitting the primary drainage curve of the capillary pressure saturation relationship obtained in the residual decoupling approximation [9] to the primary drainage curve of van Genuchten parametrization that [15] obtained by a fit to data of the first drainage process in the experiment. [681.1.10.3] The van Genuchten parameters in [15] are , , , , , , , . [681.1.10.4] The resulting capillary pressure curves are compared in Figure 2. [681.1.10.5] The viscous resistance coefficients were obtained through , , where was again taken from [15]. [681.1.10.6] The viscous resistance coefficients for the non-percolating phases are assumed to be much larger than those for the percolating phases . [681.1.10.7] For the time-scale of the experiment the results do not depend on the numerical values of the resistance coefficients given in Table 1 [3].