# Match the equivalent fractions and write two more for each.(i) $\frac{250}{400}$(a) $\frac{2}{3}$(ii) $\frac{180}{200}$(b) $\frac{2}{5}$(iii) $\frac{660}{990}$(c) $\frac{1}{2}$(iv) $\frac{180}{360}$(d) $\frac{5}{8}$(v) $\frac{220}{550}$(e) $\frac{9}{10}$"

To do:

We have to match the equivalent fractions and write two more for each.

Solution:

(i) $\frac{250}{400}=\frac{5\times50}{8\times50}$

$=\frac{5}{8}$

$\frac{5\times10}{8\times10}=\frac{50}{80}$ and $\frac{5\times20}{8\times20}=\frac{100}{160}$ are two more fractions.

(ii) $\frac{180}{200}=\frac{9\times20}{10\times20}$

$=\frac{9}{10}$

$\frac{9\times10}{10\times10}=\frac{90}{100}$ and $\frac{9\times30}{10\times30}=\frac{270}{300}$ are two more fractions.

(iii) $\frac{660}{990}=\frac{2\times330}{3\times330}$

$=\frac{2}{3}$

$\frac{2\times10}{3\times10}=\frac{20}{30}$ and $\frac{2\times20}{3\times20}=\frac{40}{60}$ are two more fractions.

(iv) $\frac{180}{360}=\frac{1\times180}{2\times180}$

$=\frac{1}{2}$

$\frac{1\times10}{2\times10}=\frac{10}{20}$ and $\frac{1\times20}{2\times20}=\frac{20}{40}$ are two more fractions.

(v) $\frac{220}{550}=\frac{2\times110}{5\times110}$

$=\frac{2}{5}$

$\frac{2\times10}{5\times10}=\frac{20}{50}$ and $\frac{2\times20}{5\times20}=\frac{40}{100}$ are two more fractions.

 (i) (d) (ii) (e) (iii) (a) (iv) (c) (v) (b)
Tutorialspoint

Simply Easy Learning