# Converting a Proper Fraction With a Denominator of 2, 4, or 5 to a Decimal Online Quiz

Following quiz provides Multiple Choice Questions (MCQs) related to Converting a Proper Fraction With a Denominator of 2, 4, or 5 to a Decimal. You will have to read all the given answers and click over the correct answer. If you are not sure about the answer then you can check the answer using Show Answer button. You can use Next Quiz button to check new set of questions in the quiz. Q 1 - Convert $\mathbf {\frac{1}{2}}$ into a decimal.

### Explanation

Step 1:

We write an equivalent fraction of $\frac{1}{2}$ with a denominator 10.

$\frac{1}{2} = \frac{\left ( 1 \times 5 \right )}{\left ( 2 \times 5 \right )} = \frac{5}{10}$

Step 2:

Shifting the decimal one place to the left we get $\frac{5}{10} = \frac{5.0}{10} = 0.5$

Step 3:

So, $\frac{1}{2} = 0.5$

Q 2 - Convert $\mathbf {\frac{1}{4}}$ into a decimal.

### Explanation

Step 1:

We write an equivalent fraction of $\frac{1}{4}$ with a denominator 100.

$\frac{1}{4} = \frac{\left ( 1 \times 25 \right )}{\left ( 4 \times 25 \right )} = \frac{25}{100}$

Step 2:

Shifting the decimal two places to the left we get $\frac{1}{4} = \frac{25}{100} = 0.25$

Step 3:

So, $\frac{1}{4} = 0.25$

Q 3 - Convert $\mathbf {\frac{2}{4}}$ into a decimal.

### Explanation

Step 1:

We write an equivalent fraction of $\frac{2}{4}$ with a denominator 100.

$\frac{2}{4} = \frac{\left ( 2 \times 25 \right )}{\left ( 4 \times 25 \right )} = \frac{50}{100}$

Step 2:

Shifting the decimal two places to the left we get $\frac{2}{4} = \frac{50}{100} = 0.50$

Step 3:

So, $\frac{2}{4} = 0.50$

Q 4 - Convert $\mathbf {\frac{3}{4}}$ into a decimal.

### Explanation

Step 1:

We write an equivalent fraction of $\frac{3}{4}$ with a denominator 100.

$\frac{3}{4} = \frac{\left ( 3 \times 25 \right )}{\left ( 4 \times 25 \right )} = \frac{75}{100}$

Step 2:

Shifting the decimal two places to the left we get $\frac{3}{4} = \frac{75}{100} = 0.75$

Step 3:

So, $\frac{3}{4} = 0.75$

Q 5 - Convert $\mathbf {\frac{1}{5}}$ into a decimal.

### Explanation

Step 1:

We write an equivalent fraction of $\frac{1}{5}$ with a denominator 10.

$\frac{1}{5} = \frac{\left ( 1 \times 2 \right )}{\left ( 5 \times 2 \right )} = \frac{2}{10}$

Step 2:

Shifting the decimal one place to the left we get $\frac{1}{5} = \frac{2}{10} = 0.2$

Step 3:

So, $\frac{1}{5} = 0.2$

Q 6 - Convert $\mathbf {\frac{2}{5}}$ into a decimal.

### Explanation

Step 1:

We write an equivalent fraction of $\frac{2}{5}$ with a denominator 10.

$\frac{2}{5} = \frac{\left ( 2 \times 2 \right )}{\left ( 5 \times 2 \right )} = \frac{4}{10}$

Step 2:

Shifting the decimal one place to the left we get $\frac{2}{5} = \frac{4}{10} = 0.4$

Step 3:

So, $\frac{2}{5} = 0.4$

Q 7 - Convert $\mathbf {\frac{3}{5}}$ into a decimal.

### Explanation

Step 1:

We write an equivalent fraction of $\frac{3}{5}$ with a denominator 10.

$\frac{3}{5} = \frac{\left ( 3 \times 2 \right )}{\left ( 5 \times 2 \right )} = \frac{6}{10}$

Step 2:

Shifting the decimal one place to the left we get $\frac{3}{5} = \frac{6}{10} = 0.6$

Step 3:

So, $\frac{3}{5} = 0.6$

Q 8 - Convert $\mathbf {\frac{4}{5}}$ into a decimal.

### Explanation

Step 1:

We write an equivalent fraction of $\frac{4}{5}$ with a denominator 10.

$\frac{4}{5} = \frac{\left ( 4 \times 2 \right )}{\left ( 5 \times 2 \right )} = \frac{8}{10}$

Step 2:

Shifting the decimal one place to the left we get $\frac{4}{5} = \frac{8}{10} = 0.8$

Step 3:

So, $\frac{4}{5} = 0.8$

Q 9 - Convert $\mathbf {\frac{1}{2}}$ into a decimal.

### Explanation

Step 1:

We write an equivalent fraction of $\frac{1}{2}$ with a denominator 10.

$\frac{1}{2} = \frac{\left ( 1 \times 5 \right )}{\left ( 2 \times 5 \right )} = \frac{5}{10}$

Step 2:

Shifting the decimal one place to the left we get $\frac{5}{10} = \frac{5.0}{10} = 0.5$

Step 3:

So, $\frac{1}{2} = 0.5$

Q 10 - Convert $\mathbf {\frac{1}{4}}$ into a decimal.

### Explanation

Step 1:

We write an equivalent fraction of $\frac{1}{4}$ with a denominator 100.

$\frac{1}{4} = \frac{\left ( 1 \times 25 \right )}{\left ( 4 \times 25 \right )} = \frac{25}{100}$

Step 2:

Shifting the decimal two places to the left we get $\frac{1}{4} = \frac{25}{100} = 0.25$

Step 3:

So, $\frac{1}{4} = 0.25$

converting_proper_fraction_with_denominator_2_4_5_decimal.htm 