
- Converting Fractions to Decimals
- Home
- Writing a Decimal and a Fraction for a Shaded Region
- Converting a Fraction With a Denominator of 10 or 100 to a Decimal
- Converting a Fraction With a Denominator of 100 or 1000 to a Decimal
- Converting a Proper Fraction With a Denominator of 2, 4, or 5 to a Decimal
- Converting a Mixed Number With a Denominator of 2, 4, or 5 to a Decimal
- Converting a Fraction to a Terminating Decimal - Basic
- Converting a Fraction to a Terminating Decimal - Advanced
- Converting a Fraction to a Repeating Decimal - Basic
- Converting a Fraction to a Repeating Decimal - Advanced
- Using a Calculator to Convert a Fraction to a Rounded Decimal
- Converting a Mixed Number to a Terminating Decimal - Basic
- Converting a Mixed Number to a Terminating Decimal - Advanced
- Ordering Fractions and Decimals
Converting a Fraction to a Repeating Decimal Basic Online Quiz
Following quiz provides Multiple Choice Questions (MCQs) related to Converting a Fraction to a Repeating Decimal Basic. You will have to read all the given answers and click over the correct answer. If you are not sure about the answer then you can check the answer using Show Answer button. You can use Next Quiz button to check new set of questions in the quiz.

Answer : B
Explanation
Step 1:
Using long division, $\frac{2}{9} = 0.222...$
Step 2:
Putting a bar over repeating 2, we get $0.222... = 0.\bar{2}$
Step 3:
So, $\frac{2}{9} = 0.\bar{2}$
Answer : C
Explanation
Step 1:
Using long division, $\frac{8}{9} = 0.888...$
Step 2:
Putting a bar over repeating 8, we get $0.888... = 0.\bar{8}$
Step 3:
So, $\frac{8}{9} = 0.\bar{8}$
Answer : A
Explanation
Step 1:
Using long division, $\frac{3}{11} = 0.272727...$
Step 2:
Putting a bar over repeating 27, we get $0.272727.... = 0.\overline{27}$
Step 3:
So, $\frac{3}{11} = 0.\overline{27}$
Answer : D
Explanation
Step 1:
Using long division, $\frac{5}{11} = 0.454545...$
Step 2:
Putting a bar over repeating 45, we get $0.454545.... = 0.\overline{45}$
Step 3:
So, $\frac{5}{11} = 0.\overline{45}$
Answer : C
Explanation
Step 1:
Using long division, $\frac{7}{11} = 0.636363... = 0.\overline{63}$
Step 2:
Putting a bar over repeating 63, we get $0.6363... = 0.\overline{63}$
Step 3:
So, $\frac{7}{11} = 0.\overline{63}$
Answer : A
Explanation
Step 1:
Using long division, $\frac{5}{12} = 0.41666... = 0.41\bar{6}$
Step 2:
Putting a bar over repeating 6, we get $0.41666... = 0.41\bar{6}$
Step 3:
So, $\frac{5}{12} = 0.41\bar{6}$
Answer : B
Explanation
Step 1:
Using long division, $\frac{7}{15} = 0.4666... = 0.4\bar{6}$
Step 2:
Putting a bar over repeating 6, we get $0.4666... = 0.4\bar{6}$
Step 3:
So, $\frac{7}{15} = 0.4\bar{6}$
Answer : D
Explanation
Step 1:
Using long division, $\frac{7}{12} = 0.58333... = 0.58\bar{3}$
Step 2:
Putting a bar over repeating 3, we get $0.58333... = 0.58\bar{3}$
Step 3:
So, $\frac{7}{12} = 0.58\bar{3}$
Answer : A
Explanation
Step 1:
Using long division, $\frac{8}{15} = 0.5333....$
Step 2:
Putting a bar over repeating 3, we get $0.5333... = 0.5\bar{3}$
Step 3:
So, $\frac{8}{15} = 0.5\bar{3}$
Answer : C
Explanation
Step 1:
Using long division, $\frac{11}{15} = 0.7333...$
Step 2:
Putting a bar over repeating 3, we get $0.7333.... = 0.7\bar{3}$
Step 3:
So, $\frac{11}{15} = 0.7\bar{3}$