# Converting a Fraction to a Repeating Decimal Advanced Online Quiz

Following quiz provides Multiple Choice Questions (MCQs) related to Converting a Fraction to a Repeating Decimal Advanced. You will have to read all the given answers and click over the correct answer. If you are not sure about the answer then you can check the answer using Show Answer button. You can use Next Quiz button to check new set of questions in the quiz. Q 1 - Convert $\mathbf {\frac{9}{7}}$ into a decimal. If necessary, use a bar to indicate which digit or group of digits repeats.

### Explanation

Step 1:

Using long division, $\frac{9}{7} = 1.285714285714...$

Step 2:

Putting a bar over repeating 285714, we get $1.285714285714... = 1.\overline{285714}$

Step 3:

So, $\frac{9}{7} = 1.\overline{285714}$

Q 2 - Convert $\mathbf {\frac{11}{9}}$ into a decimal. If necessary, use a bar to indicate which digit or group of digits repeats.

### Explanation

Step 1:

Using long division, $\frac{11}{9} = 1.222...$

Step 2:

Putting a bar over repeating 2, we get $1.222... = 1.\bar{2}$

Step 3:

So, $\frac{11}{9} = 1.\bar{2}$

Q 3 - Convert $\mathbf {\frac{14}{3}}$ into a decimal. If necessary, use a bar to indicate which digit or group of digits repeats.

### Explanation

Step 1:

Using long division, $\frac{14}{3} = 4.666...$

Step 2:

Putting a bar over repeating 6, we get $4.666.... = 4.\bar{6}$

Step 3:

So, $\frac{14}{3} = 4.\bar{6}$

Q 4 - Convert $\mathbf {\frac{16}{3}}$ into a decimal. If necessary, use a bar to indicate which digit or group of digits repeats.

### Explanation

Step 1:

Using long division, $\frac{16}{3} = 5.333... = 5.\bar{3}$

Step 2:

Putting a bar over repeating 3, we get $5.333.... = 5.\bar{3}$

Step 3:

So, $\frac{16}{3} = 5.\bar{3}$

Q 5 - Convert $\mathbf {\frac{19}{6}}$ into a decimal. If necessary, use a bar to indicate which digit or group of digits repeats.

### Explanation

Step 1:

Using long division, $\frac{19}{6} = 3.1666...$

Step 2:

Putting a bar over repeating 6, we get $3.1666... = 3.1\bar{6}$

Step 3:

So, $\frac{19}{6} = 3.1\bar{6}$

Q 6 - Convert $\mathbf {\frac{23}{3}}$ into a decimal. If necessary, use a bar to indicate which digit or group of digits repeats.

### Explanation

Step 1:

Using long division, $\frac{23}{3} = 7.666...$

Step 2:

Putting a bar over repeating 6, we get $7.666... = 7.\bar{6}$

Step 3:

So, $\frac{23}{3} = 7.\bar{6}$

Q 7 - Convert $\mathbf {\frac{29}{6}}$ into a decimal. If necessary, use a bar to indicate which digit or group of digits repeats.

### Explanation

Step 1:

Using long division, $\frac{29}{6} = 4.8333...$

Step 2:

Putting a bar over repeating 6, we get $4.8333... = 4.8\bar{3}$

Step 3:

So, $\frac{29}{6} = 4.8\bar{3}$

Q 8 - Convert $\mathbf {\frac{25}{9}}$ into a decimal. If necessary, use a bar to indicate which digit or group of digits repeats.

### Explanation

Step 1:

Using long division, $\frac{25}{9} = 2.777...$

Step 2:

Putting a bar over repeating 3, we get $2.777... = 2.\bar{7}$

Step 3:

So, $\frac{25}{9} = 2.\bar{7}$

Q 9 - Convert $\mathbf {\frac{29}{3}}$ into a decimal. If necessary, use a bar to indicate which digit or group of digits repeats.

### Explanation

Step 1:

Using long division, $\frac{29}{3} = 9.666....$

Step 2:

Putting a bar over repeating 3, we get $9.666... = 9.\bar{6}$

Step 3:

So, $\frac{29}{3} = 9.\bar{6}$

Q 10 - Convert $\mathbf {\frac{35}{6}}$ into a decimal. If necessary, use a bar to indicate which digit or group of digits repeats.

### Explanation

Step 1:

Using long division, $\frac{35}{6} = 5.8333...$

Step 2:

Putting a bar over repeating 3, we get $5.8333.... = 5.8\bar{3}$

Step 3:

So, $\frac{35}{6} = 5.8\bar{3}$ 