Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Programming Articles - Page 1209 of 3363
3K+ Views
To add vertical lines to a distribution plot, we can take the following steps−Create a list of numbers.Create an axis using sns.displot().Get x and y data of the axis ax.Plot a vertical line on the plot.Remove the line at the 0th index.To display the figure, use show() method.Exampleimport seaborn as sns, numpy as np import matplotlib.pyplot as plt plt.rcParams["figure.figsize"] = [7.00, 3.50] plt.rcParams["figure.autolayout"] = True x = [5, 6, 7, 2, 3, 4, 1, 8, 2] ax = sns.distplot(x, kde=True) x = ax.lines[0].get_xdata() y = ax.lines[0].get_ydata() plt.axvline(x[np.argmax(y)], color='red') ax.lines[0].remove() plt.show()OutputRead More
6K+ Views
To get a list of axes of a figure, we will first create a figure and then, use get_axes() method to get the axes and set the labels of those axes.Create xs and ys using numpy and fig using figure() method. Create a new figure, or activate an existing figure.Use add_subplot() method. Add an '~.axes.Axes' to the figure as part of a subplot arrangement, where nrows=1, ncols=1 and index=1.. Get the axes of the fig, and set the xlabel and ylabel.Plot x and y data points with red color.To display the figure, use show() method.Exampleimport numpy as np from matplotlib ... Read More
9K+ Views
To draw a log-normalized imshow() plot with a colorbar representing the raw data in matplotlib, we can take the following steps −Create a 2D array using numpy.Display the data as an image, i.e., on a 2D regular raster, using imshow() methodCreate a colorbar for a ScalarMappable instance, *mappable*, using imshow() method.To display the figure, use show() method.Exampleimport numpy as np from matplotlib import pyplot as plt, cm from matplotlib import colors plt.rcParams["figure.figsize"] = [7.00, 3.50] plt.rcParams["figure.autolayout"] = True data = np.random.rand(4, 4) im = plt.imshow(data, cmap=cm.rainbow, norm=colors.LogNorm()) plt.colorbar(im) plt.show()OutputRead More
2K+ Views
To plot circular (polar) histogram in Python, we can take the following steps−Create data points for theta, radii and width using numpy.Add a subplot to the current figure, where projection='polar' and nrows=1, ncols=1 and index=1.. Make a bar plot using bar() method, with theta, radii and width data pointsIterate radii and bars after zipping them together and set the face color of the bar and the alpha value. Lesser the alpha value, greater the transparency.To display the figure, use show() method.Exampleimport numpy as np import matplotlib.pyplot as plt plt.rcParams["figure.figsize"] = [7.00, 3.50] plt.rcParams["figure.autolayout"] = True N = 20 theta = ... Read More
1K+ Views
To add different graphs (as an inset) in another Python graph, we can take the following steps −Create x and y data points using numpy.Using subplots() method, create a figure and a set of subplots, i.e., fig and ax.To create a new axis, add axis to the existing figure (Step 2).Plot x and y on the axis (Step 2).Plot x and y on the new axis (Step 3).To display the figure, use show() method.Exampleimport numpy as np from matplotlib import pyplot as plt plt.rcParams["figure.figsize"] = [7.00, 3.50] plt.rcParams["figure.autolayout"] = True x = np.linspace(-1, 1, 100) y = np.sin(x) fig, ax = plt.subplots() left, bottom, width, height = [.30, 0.6, ... Read More
597 Views
To change order of plots in Pandas hist commad, we can take the following steps −Make a data frame using Pandas.Plot a histogram with the data frame.Plot the data frame in different order.To display the figure, use show() method.Examplefrom matplotlib import pyplot as plt import pandas as pd plt.rcParams["figure.figsize"] = [7.50, 3.50] plt.rcParams["figure.autolayout"] = True df = pd.DataFrame({'a': [1, 1, 1, 1, 3], 'b': [1, 1, 2, 1, 3], 'c': [2, 2, 2, 1, 3], }) df.hist() df[['c']].hist() df[['a']].hist() df[['b']].hist() plt.show()Output
3K+ Views
To put text outside a plot, we can change the text position by changing the value of text_pos_x and text_pos_yStepsCreate data points for x and y.Initialize the text position of x and y.To plot x and y, use plot() method with color='red'.Use text() method to add text to figure.To display the figure, use show() method.Exampleimport numpy as np from matplotlib import pyplot as plt plt.rcParams["figure.figsize"] = [7.00, 3.50] plt.rcParams["figure.autolayout"] = True x = np.linspace(1, 5, 100) y = np.exp(x) text_pos_x = 0.60 text_pos_y = 0.50 plt.plot(x, y, c='red') plt.text(text_pos_x, text_pos_y, "$\mathit{y}=e^{x}$", fontsize=14, transform=plt.gcf().transFigure, color='green') plt.show()OutputRead More
1K+ Views
To make grouped labels for bar charts, we can take the following steps −Create lists for labels, men_means and women_means with different data elements.Return evenly spaced values within a given interval, using numpy.arrange() method.Set the width variable, i.e., width=0.35.Create fig and ax variables using subplots method, where default nrows and ncols are 1.The bars are positioned at *x* with the given *align*\ment. Their dimensions are given by *height* and *width*. The vertical baseline is *bottom* (default 0), so create rect1 and rect2 using plt.bar() method.Set the Y-Axis label using plt.ylabel() method.Set a title for the axes using set_title() method.Get or set the current tick locations and ... Read More
409 Views
To rotate xticklabels in matplotlib to make equal spacing between two xticklabels, we can take the following steps −Make a list of numbers from 1 to 4.Using subplot(), sdd a subplot to the current figure.Add xticks and yticks on the current subplot (using step 1).Set xtick labels by passing a list and to make label rotation (= 45).To display the figure, use show() method.Exampleimport matplotlib.pyplot as plt plt.rcParams["figure.figsize"] = [7.00, 3.50] plt.rcParams["figure.autolayout"] = True x = [1, 2, 3, 4] ax1 = plt.subplot() ax1.set_xticks(x) ax1.set_yticks(x) ax1.set_xticklabels(["one", "two", "three", "four"], rotation=45) plt.show()OutputRead More
1K+ Views
To plot a colorplot of a 2D array, we can take the following steps −Create data (i.e., 2D array) using numpy.For colorplot, use imshow() method, with input data (Step 1) and colormap is "PuBuGn".To display the figure, use show() method.Exampleimport numpy as np from matplotlib import pyplot as plt plt.rcParams["figure.figsize"] = [7.00, 3.50] plt.rcParams["figure.autolayout"] = True data = np.random.rand(4, 4) plt.imshow(data, cmap='PuBuGn') plt.show()Output