To create horizontal lines for each bar in a bar plot of base R, we can use abline function and pass the same values as in the original barplot with h argument that represents horizontal with different color to make the plot a little better in terms of visualization.Example Live Demox
Using Pandas, we can create a dataframe with time and speed, and thereafter, we can use the data frame to get the desired plot.StepsConstruct a new Generator with the default BitGenerator (PCG64).Using Pandas, get a fixed frequency DatetimeIndex. From '2020-01-01' to '2021-01-01'.Draw samples from a log-normal distribution.Make a data frame with above data.Using panda dataframe create plot, with figsize = (10, 5).To show the figure, use the plt.show() method.Exampleimport numpy as np import pandas as pd from matplotlib import pyplot as plt rng = np.random.default_rng(seed=1) date_day = pd.date_range(start='2020-01-01', end='2021-01-01', freq='D') traffic = rng.lognormal(sigma=2, size=date_day.size) df_day = pd.DataFrame(dict(speed=[pow(2, -i) for ... Read More
In plt.hist() method, stacked=True could help to get the heights of the bars sum to 1.StepsCreate a list of numbers.Using plt.hist(), we can draw the histogram.stacked : bool, default: FalseIf "True", multiple data are stacked on top of each other If ``False`` multiple data are arranged side by side if histtype is 'bar' or on top of each other if histtype is 'step'.density : bool, default: FalseIf "True", draw and return a probability density: each bin will display the bin's raw count divided by the total number of counts *and the bin width*.To show the figure, use the plt.show() method.Examplefrom ... Read More
In this program, we will append elements to a Pandas series. We will use the append() function for this task. Please note that we can only append a series or list/tuple of series to the existing series.AlgorithmStep1: Define a Pandas series, s1. Step 2: Define another series, s2. Step 3: Append s2 to s1. Step 4: Print the final appended series.Example Codeimport pandas as pd s1 = pd.Series([10, 20, 30, 40, 50]) s2 = pd.Series([11, 22, 33, 44, 55]) print("S1:", s1) print("S2:", s2) appended_series = s1.append(s2) print("Final Series after appending:", appended_series)OutputS1: 0 10 1 20 ... Read More
In this problem we have to sort a Pandas series. We will define an unsorted pandas series and will sort it using the sort_values() function in the Pandas library.AlgorithmStep 1: Define Pandas series. Step 2: Sort the series using sort_values() function. Step 3: Print the sorted series.Example Codeimport pandas as pd panda_series = pd.Series([18, 15, 66, 92, 55, 989]) print("Unsorted Pandas Series: ", panda_series) panda_series_sorted = panda_series.sort_values(ascending = True) print("Sorted Pandas Series: ", panda_series_sorted)OutputUnsorted Pandas Series: 0 18 1 15 2 66 3 92 4 55 5 ... Read More
First, we can create an array matrix with some np.nan value, and using imshow method, we can create a diagram for that matrix.StepsCreate a new figure, or activate an existing figure.Add an `~.axes.Axes` to the figure as part of a subplot arrangement, nrows = 1, ncols = 1, index = 1.Create a 2D array with np.nan.Display data as an image, i.e., on a 2D regular raster.Use the draw() method which draws the drawing at the given location.To show the figure, use the plt.show() method.Exampleimport numpy as np import matplotlib.pyplot as plt f = plt.figure() ax = f.add_subplot(111) a = ... Read More
This is a simple program wherein we have to reverse a numpy array. We will use numpy.flip() function for the same.AlgorithmStep 1: Import numpy. Step 2: Define a numpy array using numpy.array(). Step 3: Reverse the array using numpy.flip() function. Step 4: Print the array.Example Codeimport numpy as np arr = np.array([10,20,30,40,50]) print("Original Array: ", arr) arr_reversed = np.flip(arr) print("Reversed Array: ", arr_reversed)OutputOriginal Array: [10 20 30 40 50] Reversed Array: [50 40 30 20 10]
In this program, we have to print elements of a numpy array in a given range. The different numpy functions used are numpy.where() and numpy.logical_and().AlgorithmStep 1: Define a numpy array. Step 2: Use np.where() and np.logical_and() to find the numbers within the given range. Step 3: Print the result.Example Codeimport numpy as np arr = np.array([1,3,5,7,10,2,4,6,8,10,36]) print("Original Array:",arr) result = np.where(np.logical_and(arr>=4, arr
To get the axes instance, we will use the subplots() method.StepsMake a list of years.Make a list of populations in that year.Get the number of labels using np.arrange(len(years)) method.Set the width of the bars.Create fig and ax variables using subplots() method, where default nrows and ncols are 1.Set the Y-axis label of the figure using set_ylabel().Set the title of the figure, using set_title() method.Set the x-ticks with x that is created in step 3, using set_xticks method.Set the xtick_labels with years data, using set_xticklabels method.Use plt.show() method to show the figure.Examplefrom matplotlib import pyplot as plt import numpy as np ... Read More
In this program, we will find the set difference of two numpy arrays. We will use the setdiff1d() function in the numpy library. This function takes two parameters: array1 and array2 and returns the unique values in array1 that are not in array2.AlgorithmStep 1: Import numpy. Step 2: Define two numpy arrays. Step 3: Find the set difference between these arrays using the setdiff1d() function. Step 4: Print the output.Example Codeimport numpy as np array_1 = np.array([2, 4, 6, 8, 10, 12]) print("Array 1: ", array_1) array_2 = np.array([4, 8, 12]) print("Array 2: ", array_2) set_diff = ... Read More
Data Structure
Networking
RDBMS
Operating System
Java
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP