- Statistics Tutorial
- Home
- Adjusted R-Squared
- Analysis of Variance
- Arithmetic Mean
- Arithmetic Median
- Arithmetic Mode
- Arithmetic Range
- Bar Graph
- Best Point Estimation
- Beta Distribution
- Binomial Distribution
- Black-Scholes model
- Boxplots
- Central limit theorem
- Chebyshev's Theorem
- Chi-squared Distribution
- Chi Squared table
- Circular Permutation
- Cluster sampling
- Cohen's kappa coefficient
- Combination
- Combination with replacement
- Comparing plots
- Continuous Uniform Distribution
- Continuous Series Arithmetic Mean
- Continuous Series Arithmetic Median
- Continuous Series Arithmetic Mode
- Cumulative Frequency
- Co-efficient of Variation
- Correlation Co-efficient
- Cumulative plots
- Cumulative Poisson Distribution
- Data collection
- Data collection - Questionaire Designing
- Data collection - Observation
- Data collection - Case Study Method
- Data Patterns
- Deciles Statistics
- Discrete Series Arithmetic Mean
- Discrete Series Arithmetic Median
- Discrete Series Arithmetic Mode
- Dot Plot
- Exponential distribution
- F distribution
- F Test Table
- Factorial
- Frequency Distribution
- Gamma Distribution
- Geometric Mean
- Geometric Probability Distribution
- Goodness of Fit
- Grand Mean
- Gumbel Distribution
- Harmonic Mean
- Harmonic Number
- Harmonic Resonance Frequency
- Histograms
- Hypergeometric Distribution
- Hypothesis testing
- Individual Series Arithmetic Mean
- Individual Series Arithmetic Median
- Individual Series Arithmetic Mode
- Interval Estimation
- Inverse Gamma Distribution
- Kolmogorov Smirnov Test
- Kurtosis
- Laplace Distribution
- Linear regression
- Log Gamma Distribution
- Logistic Regression
- Mcnemar Test
- Mean Deviation
- Means Difference
- Multinomial Distribution
- Negative Binomial Distribution
- Normal Distribution
- Odd and Even Permutation
- One Proportion Z Test
- Outlier Function
- Permutation
- Permutation with Replacement
- Pie Chart
- Poisson Distribution
- Pooled Variance (r)
- Power Calculator
- Probability
- Probability Additive Theorem
- Probability Multiplecative Theorem
- Probability Bayes Theorem
- Probability Density Function
- Process Capability (Cp) & Process Performance (Pp)
- Process Sigma
- Quadratic Regression Equation
- Qualitative Data Vs Quantitative Data
- Quartile Deviation
- Range Rule of Thumb
- Rayleigh Distribution
- Regression Intercept Confidence Interval
- Relative Standard Deviation
- Reliability Coefficient
- Required Sample Size
- Residual analysis
- Residual sum of squares
- Root Mean Square
- Sample planning
- Sampling methods
- Scatterplots
- Shannon Wiener Diversity Index
- Signal to Noise Ratio
- Simple random sampling
- Skewness
- Standard Deviation
- Standard Error ( SE )
- Standard normal table
- Statistical Significance
- Statistics Formulas
- Statistics Notation
- Stem and Leaf Plot
- Stratified sampling
- Student T Test
- Sum of Square
- T-Distribution Table
- Ti 83 Exponential Regression
- Transformations
- Trimmed Mean
- Type I & II Error
- Variance
- Venn Diagram
- Weak Law of Large Numbers
- Z table
- Statistics Useful Resources
- Statistics - Discussion

- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who

# Statistics - F Test Table

F-test is named after the more prominent analyst R.A. Fisher. F-test is utilized to test whether the two autonomous appraisals of populace change contrast altogether or whether the two examples may be viewed as drawn from the typical populace having the same difference. For doing the test, we calculate F-statistic is defined as:

## Formula

${F} = \frac{Larger\ estimate\ of\ population\ variance}{smaller\ estimate\ of\ population\ variance} = \frac{{S_1}^2}{{S_2}^2}\ where\ {{S_1}^2} \gt {{S_2}^2}$

### Procedure

Its testing procedure is as follows:

Set up null hypothesis that the two population variance are equal. i.e. ${H_0: {\sigma_1}^2 = {\sigma_2}^2}$

The variances of the random samples are calculated by using formula:

${S_1^2} = \frac{\sum(X_1- \bar X_1)^2}{n_1-1}, \\[7pt] \ {S_2^2} = \frac{\sum(X_2- \bar X_2)^2}{n_2-1}$

The variance ratio F is computed as:

${F} = \frac{{S_1}^2}{{S_2}^2}\ where\ {{S_1}^2} \gt {{S_2}^2}$

The degrees of freedom are computed. The degrees of freedom of the larger estimate of the population variance are denoted by v1 and the smaller estimate by v2. That is,

${v_2}$ = degrees of freedom for sample having smaller variance = ${n_2-1}$

${v_1}$ = degrees of freedom for sample having larger variance = ${n_1-1}$

Then from the F-table given at the end of the book, the value of ${F}$ is found for ${v_1}$ and ${v_2}$ with 5% level of significance.

Then we compare the calculated value of ${F}$ with the table value of ${F_.05}$ for ${v_1}$ and ${v_2}$ degrees of freedom. If the calculated value of ${F}$ exceeds the table value of ${F}$, we reject the null hypothesis and conclude that the difference between the two variances is significant. On the other hand, if the calculated value of ${F}$ is less than the table value, the null hypothesis is accepted and concludes that both the samples illustrate the applications of F-test.

### Example

**Problem Statement:**

In a sample of 8 observations, the entirety of squared deviations of things from the mean was 94.5. In another specimen of 10 perceptions, the worth was observed to be 101.7 Test whether the distinction is huge at 5% level. (You are given that at 5% level of centrality, the basic estimation of ${F}$ for ${v_1}$ = 7 and ${v_2}$ = 9, ${F_.05}$ is 3.29).

**Solution:**

Let us take the hypothesis that the difference in the variances of the two samples is not significant i.e. ${H_0: {\sigma_1}^2 = {\sigma_2}^2}$

We are given the following:

Applying F-Test

${F} = \frac{{S_1}^2}{{S_2}^2} = \frac {13.5}{11.3} = {1.195}$

For ${v_1}$ = 8-1 = 7, ${v_2}$ = 10-1 = 9 and ${F_.05}$ = 3.29. The Calculated value of ${F}$ is less than the table value. Hence, we accept the null hypothesis and conclude that the difference in the variances of two samples is not significant at 5% level.