- Statistics Tutorial
- Home
- Adjusted R-Squared
- Analysis of Variance
- Arithmetic Mean
- Arithmetic Median
- Arithmetic Mode
- Arithmetic Range
- Bar Graph
- Best Point Estimation
- Beta Distribution
- Binomial Distribution
- Black-Scholes model
- Boxplots
- Central limit theorem
- Chebyshev's Theorem
- Chi-squared Distribution
- Chi Squared table
- Circular Permutation
- Cluster sampling
- Cohen's kappa coefficient
- Combination
- Combination with replacement
- Comparing plots
- Continuous Uniform Distribution
- Continuous Series Arithmetic Mean
- Continuous Series Arithmetic Median
- Continuous Series Arithmetic Mode
- Cumulative Frequency
- Co-efficient of Variation
- Correlation Co-efficient
- Cumulative plots
- Cumulative Poisson Distribution
- Data collection
- Data collection - Questionaire Designing
- Data collection - Observation
- Data collection - Case Study Method
- Data Patterns
- Deciles Statistics
- Discrete Series Arithmetic Mean
- Discrete Series Arithmetic Median
- Discrete Series Arithmetic Mode
- Dot Plot
- Exponential distribution
- F distribution
- F Test Table
- Factorial
- Frequency Distribution
- Gamma Distribution
- Geometric Mean
- Geometric Probability Distribution
- Goodness of Fit
- Grand Mean
- Gumbel Distribution
- Harmonic Mean
- Harmonic Number
- Harmonic Resonance Frequency
- Histograms
- Hypergeometric Distribution
- Hypothesis testing
- Individual Series Arithmetic Mean
- Individual Series Arithmetic Median
- Individual Series Arithmetic Mode
- Interval Estimation
- Inverse Gamma Distribution
- Kolmogorov Smirnov Test
- Kurtosis
- Laplace Distribution
- Linear regression
- Log Gamma Distribution
- Logistic Regression
- Mcnemar Test
- Mean Deviation
- Means Difference
- Multinomial Distribution
- Negative Binomial Distribution
- Normal Distribution
- Odd and Even Permutation
- One Proportion Z Test
- Outlier Function
- Permutation
- Permutation with Replacement
- Pie Chart
- Poisson Distribution
- Pooled Variance (r)
- Power Calculator
- Probability
- Probability Additive Theorem
- Probability Multiplecative Theorem
- Probability Bayes Theorem
- Probability Density Function
- Process Capability (Cp) & Process Performance (Pp)
- Process Sigma
- Quadratic Regression Equation
- Qualitative Data Vs Quantitative Data
- Quartile Deviation
- Range Rule of Thumb
- Rayleigh Distribution
- Regression Intercept Confidence Interval
- Relative Standard Deviation
- Reliability Coefficient
- Required Sample Size
- Residual analysis
- Residual sum of squares
- Root Mean Square
- Sample planning
- Sampling methods
- Scatterplots
- Shannon Wiener Diversity Index
- Signal to Noise Ratio
- Simple random sampling
- Skewness
- Standard Deviation
- Standard Error ( SE )
- Standard normal table
- Statistical Significance
- Statistics Formulas
- Statistics Notation
- Stem and Leaf Plot
- Stratified sampling
- Student T Test
- Sum of Square
- T-Distribution Table
- Ti 83 Exponential Regression
- Transformations
- Trimmed Mean
- Type I & II Error
- Variance
- Venn Diagram
- Weak Law of Large Numbers
- Z table
- Statistics Useful Resources
- Statistics - Discussion

- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who

# Statistics - Power Calculator

Whenever a hypothesis test is conducted, we need to ascertain that test is of high qualitity. One way to check the power or sensitivity of a test is to compute the probability of test that it can reject the null hypothesis correctly when an alternate hypothesis is correct. In other words, power of a test is the probability of accepting the alternate hypothesis when it is true, where alternative hypothesis detects an effect in the statistical test.

$ {Power = \ P(\ reject\ H_0 | H_1 \ is \ true) } $

Power of a test is also test by checking the probability of Type I error($ { \alpha } $) and of Type II error($ { \beta } $) where Type I error represents the incorrect rejection of a valid null hypothesis whereas Type II error represents the incorrect retention of an invalid null hypothesis. Lesser the chances of Type I or Type II error, more is the power of statistical test.

## Example

A survey has been conducted on students to check their IQ level. Suppose a random sample of 16 students is tested. The surveyor tests the null hypothesis that the IQ of student is 100 against the alternative hypothesis that the IQ of student is not 100, using a 0.05 level of significance and standard deviation of 16. What is the power of the hypothesis test if the true population mean were 116?

**Solution:**

As distribution of the test statistic under the null hypothesis follows a Student t-distribution. Here n is large, we can approximate the t-distribution by a normal distribution. As probability of committing Type I error($ { \alpha } $) is 0.05 , we can reject the null hypothesis ${H_0}$ when the test statistic $ { T \ge 1.645 } $. Let's compute the value of sample mean using test statistics by following formula.

$ {T = \frac{ \bar X - \mu}{ \frac{\sigma}{\sqrt \mu}} \\[7pt] \implies \bar X = \mu + T(\frac{\sigma}{\sqrt \mu}) \\[7pt] \, = 100 + 1.645(\frac{16}{\sqrt {16}})\\[7pt] \, = 106.58 } $

Let's compute the power of statistical test by following formula.

$ {Power = P(\bar X \ge 106.58 \ where\ \mu = 116 ) \\[7pt] \, = P( T \ge -2.36) \\[7pt] \, = 1- P( T \lt -2.36 ) \\[7pt] \, = 1 - 0.0091 \\[7pt] \, = 0.9909 } $

So we have a 99.09% chance of rejecting the null hypothesis ${H_0: \mu = 100 } $ in favor of the alternative hypothesis $ {H_1: \mu \gt 100 } $ where unknown population mean is $ {\mu = 116 } $.