- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Verify that each of the following is an AP, and then write its next three terms.
$ 0, \frac{1}{4}, \frac{1}{2}, \frac{3}{4}, \ldots $
To do:
We have to verify whether the given sequences are APs and write their next three terms.
Solution:
(i) In the given sequence,
$a_1=0, a_2= \frac{1}{4}, a_3=\frac{1}{2}, a_4=\frac{3}{4}$
$a_2-a_1=\frac{1}{4}-0=\frac{1}{4}$
$a_3-a_2=\frac{1}{2}-\frac{1}{4}=\frac{2-1}{4}=\frac{1}{4}$
$a_4-a_3=\frac{3}{4}-\frac{1}{2}=\frac{3-2}{4}=\frac{1}{4}$
Therefore,
$a_2-a_1=a_3-a_2=a_4-a_3$
The given sequence is an AP.
$d=a_2-a_1=\frac{1}{4}-0=\frac{1}{4}$
$a_5=a_4+d=\frac{3}{4}+\frac{1}{4}=\frac{3+1}{4}=\frac{4}{4}=1$
$a_6=a_5+d=1+\frac{1}{4}=\frac{1\times4+1}{4}=\frac{5}{4}$
$a_7=a_6+d=\frac{5}{4}+\frac{1}{4}=\frac{5+1}{4}=\frac{6}{4}$
The next three terms of the given sequence are $1, \frac{5}{4}$ and $\frac{6}{4}$.
(ii) In the given sequence,
$a_1=5, a_2= \frac{14}{3}, a_3=\frac{13}{3}, a_4=4$
$a_2-a_1=\frac{14}{3}-5=\frac{14-3(5)}{3}=\frac{14-15}{3}=\frac{-1}{3}$
$a_3-a_2=\frac{13}{3}-\frac{14}{3}=\frac{13-14}{3}=\frac{-1}{3}$
$a_4-a_3=4-\frac{14}{3}=\frac{4(3)-13}{3}=\frac{12-13}{3}=\frac{-1}{3}$
Therefore,
$a_2-a_1=a_3-a_2=a_4-a_3$
The given sequence is an AP.
$d=\frac{-1}{3}$
$a_5=a_4+d=4+\frac{-1}{3}=\frac{4(3)-1}{3}=\frac{12-1}{3}=\frac{11}{3}$
$a_6=a_5+d=\frac{11}{3}+\frac{-1}{3}=\frac{11-1}{3}=\frac{10}{3}$
$a_7=a_6+d=\frac{10}{3}+\frac{-1}{3}=\frac{10-1}{3}=\frac{9}{3}=3$
The next three terms of the given sequence are $\frac{11}{3}, \frac{10}{3}$ and $3$.
(iii) In the given sequence,
$a_1=\sqrt{3}, a_2= 2\sqrt{3}, a_3=3\sqrt{3}$
$a_2-a_1=2\sqrt{3}-\sqrt{3}=\sqrt{3}$
$a_3-a_2=3\sqrt{3}-2\sqrt{3}=\sqrt{3}$
Therefore,
$a_2-a_1=a_3-a_2$
The given sequence is an AP.
$d=\sqrt{3}$
$a_4=a_3+d=3\sqrt{3}+\sqrt{3}=4\sqrt{3}$
$a_5=a_4+d=4\sqrt{3}+\sqrt{3}=5\sqrt{3}$
$a_6=a_5+d=5\sqrt{3}+\sqrt{3}=6\sqrt{3}$
The next three terms of the given sequence are $4\sqrt3, 5\sqrt3$ and $6\sqrt3$.
(iv) In the given sequence,
$a_1=a+b, a_2= (a+1)+b, a_3=(a+1)+(b+1)$
$a_2-a_1=(a+1)+b-a+b=1$
$a_3-a_2=(a+1)+(b+1)-[(a+1)+b]=a+b+2-a-1-b=1$
Therefore,
$a_2-a_1=a_3-a_2$
The given sequence is an AP.
$d=1$
$a_4=a_3+d=(a+1)+(b+1)+1=(a+2)+(b+1)$
$a_5=a_4+d=(a+2)+(b+1)+1=(a+2)+(b+2)$
$a_6=a_5+d=(a+2)+(b+2)+1=(a+3)+(b+2)$
The next three terms of the given sequence are $(a+2)+(b+1), (a+2)+(b+2)$ and $(a+3)+(b+2)$.
(v) In the given sequence,
$a_1=a, a_2= 2a+1, a_3=3a+2, a_4=4a+3$
$a_2-a_1=(2a+1)-a=a+1$
$a_3-a_2=(3a+2)-(2a+1)=a+1$
$a_4-a_3=(4a+3)-(3a+2)=a+1$
Therefore,
$a_2-a_1=a_3-a_2=a_4-a_3$
The given sequence is an AP.
$d=a+1$
$a_5=a_4+d=(4a+3)+(a+1)=5a+4$
$a_6=a_5+d=(5a+4)+(a+1)=6a+5$
$a_7=a_6+d=(6a+5)+(a+1)=7a+6$
The next three terms of the given sequence are $(5a+4), (6a+5)$ and $(7a+6)$.
- Related Articles
- Verify that each of the following is an AP, and then write its next three terms.\( 5, \frac{14}{3}, \frac{13}{3}, 4, \ldots \)
- Find the common difference of the A.P. and write the next two terms :$0, \frac{1}{4}, \frac{1}{2}, \frac{3}{4}, ………..$
- Verify that each of the following is an \( \mathrm{AP} \), and then write its next three terms.\( a+b,(a+1)+b,(a+1)+(b+1), \ldots \)
- Verify that each of the following is an \( \mathrm{AP} \), and then write its next three terms.\( \sqrt{3}, 2 \sqrt{3}, 3 \sqrt{3}, \ldots \)
- Which of the following form an AP? Justify your answer.\( \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots \)
- Find the sum of the two middle most terms of the AP: \( -\frac{4}{3},-1,-\frac{2}{3}, \ldots .4 \frac{1}{3} \).
- Verify that each of the following is an \( \mathrm{AP} \), and then write its next three terms.\( a, 2 a+1,3 a+2,4 a+3, \ldots \)
- Find the common difference and write the next four terms of each of the following arithmetic progressions :$-1, \frac{1}{4}, \frac{3}{2}, ……..$
- Verify the Following by using suitable property: $(\frac{5}{4}+\frac{-1}{2})+\frac{-3}{2}= \frac{5}{4}+(\frac{-1}{2}+\frac{-3}{2})$
- Simplify each of the following:$\frac{1}{3}$ of $1 \frac{1}{4}+2 \frac{1}{3}$
- Find the sum:\( 4-\frac{1}{n}+4-\frac{2}{n}+4-\frac{3}{n}+\ldots \) upto \( n \) terms
- Find the product of:$(1-\frac{1}{2})(1-\frac{1}{3})(1-\frac{1}{4}) \ldots(1-\frac{1}{10})$
- Which is greater in each of the following:$(i)$. $\frac{2}{3},\ \frac{5}{2}$$(ii)$. $-\frac{5}{6},\ -\frac{4}{3}$$(iii)$. $-\frac{3}{4},\ \frac{2}{-3}$$(iv)$. $-\frac{1}{4},\ \frac{1}{4}$$(v)$. $-3\frac{2}{7\ },\ -3\frac{4}{5}$
- Find the sum of two middle terms of the A.P.:$-\frac{4}{3}, -1, -\frac{2}{3}, -\frac{1}{3}, ......, 4\frac{1}{3}$.
- Which of the following are APs? If they form an AP, find the common difference $d$ and write three more terms.$-\frac{1}{2}, -\frac{1}{2}, -\frac{1}{2}, -\frac{1}{2}, …….$
