- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Verify that each of the following is an $ \mathrm{AP} $, and then write its next three terms.
$ a+b,(a+1)+b,(a+1)+(b+1), \ldots $
Given:
Given sequence is \( a+b,(a+1)+b,(a+1)+(b+1), \ldots \)
To do:
We have to verify whether the given sequence is an AP and write its next three terms.
Solution:
In the given sequence,
$a_1=a+b, a_2= (a+1)+b, a_3=(a+1)+(b+1)$
$a_2-a_1=(a+1)+b-a+b=1$
$a_3-a_2=(a+1)+(b+1)-[(a+1)+b]=a+b+2-a-1-b=1$
Therefore,
$a_2-a_1=a_3-a_2$
The given sequence is an AP.
$d=1$
$a_4=a_3+d=(a+1)+(b+1)+1=(a+2)+(b+1)$
$a_5=a_4+d=(a+2)+(b+1)+1=(a+2)+(b+2)$
$a_6=a_5+d=(a+2)+(b+2)+1=(a+3)+(b+2)$
The next three terms of the given sequence are $(a+2)+(b+1), (a+2)+(b+2)$ and $(a+3)+(b+2)$.
- Related Articles
- Verify that each of the following is an AP, and then write its next three terms.\( 0, \frac{1}{4}, \frac{1}{2}, \frac{3}{4}, \ldots \)
- Verify that each of the following is an \( \mathrm{AP} \), and then write its next three terms.\( a, 2 a+1,3 a+2,4 a+3, \ldots \)
- Verify that each of the following is an \( \mathrm{AP} \), and then write its next three terms.\( \sqrt{3}, 2 \sqrt{3}, 3 \sqrt{3}, \ldots \)
- Verify that each of the following is an AP, and then write its next three terms.\( 5, \frac{14}{3}, \frac{13}{3}, 4, \ldots \)
- Verify that $a ÷ (b+c) ≠ (a ÷ b) + (a ÷ c)$ for each of the following values of $a,\ b$ and $c$.(a) $a=12,\ b=- 4,\ c=2$(b) $a=(-10),\ b = 1,\ c = 1$
- Prove that\( \frac{a+b+c}{a^{-1} b^{-1}+b^{-1} c^{-1}+c^{-1} a^{-1}}=a b c \)
- If $V$ is the volume of a cuboid of dimensions $a, b, c$ and $S$ is its surface area, then prove that$\frac{1}{\mathrm{~V}}=\frac{2}{\mathrm{~S}}(\frac{1}{a}+\frac{1}{b}+\frac{1}{c})$
- Prove that\( \left(a^{-1}+b^{-1}\right)^{-1}=\frac{a b}{a+b} \)
- Prove that \( \frac{a^{-1}}{a^{-1}+b^{-1}}+\frac{a^{-1}}{a^{-1}-b^{-1}}=\frac{2 b^{2}}{b^{2}-a^{2}} \)
- Prove that \( (a-b)^{2}, a^{2}+b^{2} \) and \( (a+b)^{2} \) are three consecutive terms of an AP.
- If the point \( P(2,1) \) lies on the line segment joining points \( A(4,2) \) and \( B(8,4) \), then(A) \( \mathrm{AP}=\frac{1}{3} \mathrm{AB} \)(B) \( \mathrm{AP}=\mathrm{PB} \)(C) \( \mathrm{PB}=\frac{1}{3} \mathrm{AB} \)(D) \( \mathrm{AP}=\frac{1}{2} \mathrm{AB} \)
- If \( a b c=1 \), show that \( \frac{1}{1+a+b^{-1}}+\frac{1}{1+b+c^{-1}}+\frac{1}{1+c+a^{-1}}=1 \)
- Prove that\( \frac{1}{1+x^{a-b}}+\frac{1}{1+x^{b-a}}=1 \)
- Show that:\( \frac{1}{1+x^{a-b}}+\frac{1}{1+x^{b-a}}=1 \)
- Which of the following form an AP? Justify your answer.\( -1,-1,-1,-1, \ldots \)

Advertisements