Verify the Following by using suitable property: $(\frac{5}{4}+\frac{-1}{2})+\frac{-3}{2}= \frac{5}{4}+(\frac{-1}{2}+\frac{-3}{2})$
Given :
The given expression is $(\frac{5}{4}+\frac{-1}{2})+\frac{-3}{2}= \frac{5}{4}+(\frac{-1}{2}+\frac{-3}{2})$.
To do :
We have to verify the given expression using a suitable property.
Solution :
Associative Property of Addition:
The addition follows associative property. Associative property of addition states that
$(a+b)+c = a+(b+c)$
LHS
$(\frac{5}{4}+\frac{-1}{2})+\frac{-3}{2}= \frac{(5-2\times 1)}{4} + (\frac{-3}{2})$
$= \frac{3}{4} - \frac{3}{2}$
$= \frac{(3-3\times 2)}{4}$
$= \frac{(3-6)}{4}$
$= \frac{-3}{4}$.
RHS
$\frac{5}{4}+(\frac{-1}{2}+\frac{-3}{2}) = \frac{5}{4} +\frac{(-1-3)}{2}$
$=\frac{5}{4} +\frac{-4}{2}$
$= \frac{(5-4\times 2)}{4}$
$= \frac{(5-8)}{4}$
$= \frac{-3}{4}$
$LHS = RHS$
Therefore,
$(\frac{5}{4}+\frac{-1}{2})+\frac{-3}{2}= \frac{5}{4}+(\frac{-1}{2}+\frac{-3}{2})$ is verified.
- Related Articles
- Verify:$\frac{-2}{5} + [\frac{3}{5} + \frac{1}{2}] = [\frac{-2}{5} + \frac{3}{5}] + \frac{1}{2}$
- Solve(a) \( \frac{2}{3}+\frac{1}{7} \)(b) \( \frac{3}{10}+\frac{7}{15} \)(c) \( \frac{4}{9}+\frac{2}{7} \)(d) \( \frac{5}{7}+\frac{1}{3} \)(e) \( \frac{2}{5}+\frac{1}{6} \)(f) \( \frac{4}{5}+\frac{2}{3} \)(g) \( \frac{3}{4}-\frac{1}{3} \)(h) \( \frac{5}{6}-\frac{1}{3} \)(i) \( \frac{2}{3}+\frac{3}{4}+\frac{1}{2} \)(j) \( \frac{1}{2}+\frac{1}{3}+\frac{1}{6} \)(k) \( 1 \frac{1}{3}+3 \frac{2}{3} \)(l) \( 4 \frac{2}{3}+3 \frac{1}{4} \)(m) \( \frac{16}{5}-\frac{7}{5} \)(n) \( \frac{4}{3}-\frac{1}{2} \)
- Simplify:\( 5 \frac{1}{4} \p 2 \frac{1}{3}-4 \frac{2}{3} \p 5 \frac{1}{3} \times 3 \frac{1}{2} \)
- Name the property used in the following:$[\frac{2}{3}+(\frac{-4}{5})]+\frac{1}{6}=\frac{2}{3}+[(\frac{-4}{5})+\frac{1}{6}]$
- Using distributive property, solve$\frac{2}{3}\times\frac{1}{5}-\frac{4}{5}-\frac{2}{3}\times\frac{3}{5}$
- Which is greater in each of the following:$(i)$. $\frac{2}{3},\ \frac{5}{2}$$(ii)$. $-\frac{5}{6},\ -\frac{4}{3}$$(iii)$. $-\frac{3}{4},\ \frac{2}{-3}$$(iv)$. $-\frac{1}{4},\ \frac{1}{4}$$(v)$. $-3\frac{2}{7\ },\ -3\frac{4}{5}$
- Solve the following:$3 \frac{2}{5} \div \frac{4}{5} of \frac{1}{5} + \frac{2}{3} of \frac{3}{4} - 1 \frac{35}{72}$.
- Write the following in ascending order:$\frac{1}{2},\ \frac{4}{5},\ \frac{-2}{3},\ \frac{-1}{2},\ \frac{-5}{7}$.
- Take away:(i) \( \frac{6}{5} x^{2}-\frac{4}{5} x^{3}+\frac{5}{6}+\frac{3}{2} x \) from \( \frac{x^{3}}{3}-\frac{5}{2} x^{2}+ \) \( \frac{3}{5} x+\frac{1}{4} \)(ii) \( \frac{5 a^{2}}{2}+\frac{3 a^{3}}{2}+\frac{a}{3}-\frac{6}{5} \) from \( \frac{1}{3} a^{3}-\frac{3}{4} a^{2}- \) \( \frac{5}{2} \)(iii) \( \frac{7}{4} x^{3}+\frac{3}{5} x^{2}+\frac{1}{2} x+\frac{9}{2} \) from \( \frac{7}{2}-\frac{x}{3}- \) \( \frac{x^{2}}{5} \)(iv) \( \frac{y^{3}}{3}+\frac{7}{3} y^{2}+\frac{1}{2} y+\frac{1}{2} \) from \( \frac{1}{3}-\frac{5}{3} y^{2} \)(v) \( \frac{2}{3} a c-\frac{5}{7} a b+\frac{2}{3} b c \) from \( \frac{3}{2} a b-\frac{7}{4} a c- \) \( \frac{5}{6} b c \)
- Find:(i) $\frac{2}{5}\div\frac{1}{2}$(ii) $\frac{4}{9}\div\frac{2}{3}$(iii) $\frac{3}{7}\div\frac{8}{7}$(iv) $2\frac{1}{3}\div\frac{3}{5}$(v) $3\frac{1}{2}\div\frac{8}{3}$(vi) $\frac{2}{5}\div1\frac{1}{2}$(vii) $3\frac{1}{5}\div1\frac{2}{3}$(viii) $2\frac{1}{5}\div1\frac{1}{5}$
- Solve $7\frac{1}{3}\div \frac{2}{3}$ of $2\frac{1}{5}+1\frac{3}{8}\div 2\frac{3}{4}-1 \frac{1}{2}$.
- Prove that:\( \frac{2^{\frac{1}{2}} \times 3^{\frac{1}{3}} \times 4^{\frac{1}{4}}}{10^{\frac{-1}{5}} \times 5^{\frac{3}{5}}} \p \frac{3^{\frac{4}{3}} \times 5^{\frac{-7}{5}}}{4^{\frac{-3}{5}} \times 6}=10 \)
- Write the following rational numbers in ascending order:$(i)$. $\frac{-3}{5},\ \frac{-2}{5},\ \frac{-1}{5}$$(ii)$. $\frac{1}{3},\ \frac{-2}{9},\ \frac{-4}{3}$$(iii)$. $\frac{-3}{7},\ \frac{-3}{2},\ \frac{-3}{4}$
- Solve:(i) $3-\frac{2}{5}$(ii) $4+\frac{7}{8}$(iii) $\frac{3}{5}+\frac{2}{7}$(iv) $\frac{9}{11}-\frac{4}{15}$(v) $\frac{7}{10}+\frac{2}{5}+\frac{3}{2}$(vi) $2\frac{2}{3}+3\frac{1}{2}$(vii) $8\frac{1}{2}-3\frac{5}{8}$
- Take away:\( \frac{6}{5} x^{2}-\frac{4}{5} x^{3}+\frac{5}{6}+\frac{3}{2} x \) from \( \frac{x^{3}}{3}-\frac{5}{2} x^{2}+\frac{3}{5} x+\frac{1}{4} \)
Kickstart Your Career
Get certified by completing the course
Get Started