- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Find the sum:
$ 4-\frac{1}{n}+4-\frac{2}{n}+4-\frac{3}{n}+\ldots $ upto $ n $ terms
Given:
Given series is \( \left(4-\frac{1}{n}\right)+\left(4-\frac{2}{n}\right)+\left(4-\frac{3}{n}\right)+\ldots . \)
To do:
We have to find the sum of $n$ terms of the series.
Solution:
Let the number of terms of the given A.P. be $n$, first term be $a$ and the common differnce be $d$.
First term $a_1=a=4-\frac{1}{n}$
Second term $a_2= 4-\frac{2}{n}$
Common difference $d=a_2-a_1=4-\frac{2}{n}-(4-\frac{1}{n})=\frac{-2+1}{n}=\frac{-1}{n}$
We know that,
Sum of $n$ terms $S_{n} =\frac{n}{2}(2a+(n-1)d)$
$=\frac{n}{2}[2(4-\frac{1}{n})+(n-1)(\frac{-1}{n})]$
$=\frac{n}{2}[\frac{8n-2-n+1}{n}]$
$=\frac{n}{2}(\frac{7n-1}{n})$
$=\frac{7n-1}{2}$
Hence, the sum of the $n$ terms of the given series is $\frac{7n-1}{2}$.
- Related Articles
- Find the sum of n terms of the series\( \left(4-\frac{1}{n}\right)+\left(4-\frac{2}{n}\right)+\left(4-\frac{3}{n}\right)+\ldots . \)
- Solve: $\frac{n-1}{2}-\frac{n-2}{3}=\frac{n-4}{7}$.
- If $\frac{n}{4}-5=\frac{n}{6}+\frac{1}{2}$, find the value of $n$.
- Solve the following linear equation.\( \frac{n}{2}-\frac{3 n}{4}+\frac{5 n}{6}=21 \).
- Find $n$ so that$(\frac{4}{5})^3)\times(\frac{4}{5})^{-6}=(\frac{4}{5})^{2n-1}$.
- Find the sum of the two middle most terms of the AP: \( -\frac{4}{3},-1,-\frac{2}{3}, \ldots .4 \frac{1}{3} \).
- Evaluate: $\frac{a^{2 n+1} \times a^{(2 n+1)(2 n-1)}}{a^{n(4 n-1)}\times(a^{2})^{2 n+3}}$.
- Verify: \( 1+2+3+\ldots+n=\frac{n(n+1)}{2} \), taking \( n=6 \) and \( 15 . \)
- Prove that:\( \frac{2^{n}+2^{n-1}}{2^{n+1}-2^{n}}=\frac{3}{2} \)
- Find Sum of Series 1^2 - 2^2 + 3^2 - 4^2 ... upto n terms in C++
- Find the sum:$-5+\frac{7}{10}+\frac{3}{7}+(-3)+\frac{5}{14}+\frac{4}{5}$"\n
- Solve equation i) $\frac{x}{2} \ -\ \frac{1}{5} \ =\ \frac{x}{3} \ +\ \frac{1}{4}$Andii) $\frac{n}{2} \ -\ \frac{3n}{4} \ +\ \frac{5n}{6} \ =\ 21$
- Evaluate: \( 27^{-\frac{2}{3}} \times 9^{-\frac{1}{2}} \p 81^{-\frac{5}{4}} \)"\n
- The value of \( \left[\left(1-\frac{1}{n+1}\right)+\left(1-\frac{2}{n+1}\right)+\ldots \ldots+\left(1-\frac{n}{n+1}\right)\right] \) is
- Find the sum of two middle terms of the A.P.:$-\frac{4}{3}, -1, -\frac{2}{3}, -\frac{1}{3}, ......, 4\frac{1}{3}$.

Advertisements