Find the common difference of the A.P. and write the next two terms :$0, \frac{1}{4}, \frac{1}{2}, \frac{3}{4}, ………..$
Given:
Given A.P. is $0, \frac{1}{4}, \frac{1}{2}, \frac{3}{4}, ………..$
To do:
We have to find the common difference and write the next two terms of the given A.P.
Solution:
 The common difference of an A.P. is the difference between any two consecutive terms.
Here,
$a_1=0, a_2=\frac{1}{4}, a_3=\frac{1}{2}, a_4=\frac{3}{4}$
$d=a_2-a_1=\frac{1}{4}-0=\frac{1}{4}$
$a_5=a_4+d=\frac{3}{4}+\frac{1}{4}=\frac{3+1}{4}=\frac{4}{4}=1$
$a_6=a_5+d=1+\frac{1}{4}=\frac{1\times4+1}{4}=\frac{5}{4}$
The common difference of the given A.P. is $\frac{1}{4}$ and the next two terms are $1$ and $\frac{5}{4}$.   
- Related Articles
- Find the sum of two middle terms of the A.P.:$-\frac{4}{3}, -1, -\frac{2}{3}, -\frac{1}{3}, ......, 4\frac{1}{3}$.
- Find the common difference and write the next four terms of each of the following arithmetic progressions :$-1, \frac{1}{4}, \frac{3}{2}, ……..$
- Verify that each of the following is an AP, and then write its next three terms.\( 0, \frac{1}{4}, \frac{1}{2}, \frac{3}{4}, \ldots \)
- Find the sum of the two middle most terms of the AP: \( -\frac{4}{3},-1,-\frac{2}{3}, \ldots .4 \frac{1}{3} \).
- Find the sum of $\frac{1}{2}+\frac{1}{3}+\frac{1}{4}$.
- The common difference of the A.P: $-4,\ -2,\ 0,\ 2, \ldots$ is$( a).\ 2\ ( b).\ -2\ ( c).\ \frac{1}{2}\ ( d).\ -\frac{1}{2}$.
- Find the value of \( 1 \frac{1}{4}+3 \frac{1}{2} \).
- Find the common difference and write the next four terms of each of the following arithmetic progressions :$-1, -\frac{5}{6}, -\frac{2}{3}, ………..$
- Find the value of:$\left(\frac{3}{4}\ +\ \frac{1}{4}\right)\ \div\ 2\frac{1}{2}\ -\ \left(\frac{2}{3}\ \times\ \frac{7}{8}\right)\ \div\ 1\frac{1}{4}$
- Find the sum:\( 4-\frac{1}{n}+4-\frac{2}{n}+4-\frac{3}{n}+\ldots \) upto \( n \) terms
- Find $\frac{1}{2}+\frac{3}{4}$.
- Solve(a) \( \frac{2}{3}+\frac{1}{7} \)(b) \( \frac{3}{10}+\frac{7}{15} \)(c) \( \frac{4}{9}+\frac{2}{7} \)(d) \( \frac{5}{7}+\frac{1}{3} \)(e) \( \frac{2}{5}+\frac{1}{6} \)(f) \( \frac{4}{5}+\frac{2}{3} \)(g) \( \frac{3}{4}-\frac{1}{3} \)(h) \( \frac{5}{6}-\frac{1}{3} \)(i) \( \frac{2}{3}+\frac{3}{4}+\frac{1}{2} \)(j) \( \frac{1}{2}+\frac{1}{3}+\frac{1}{6} \)(k) \( 1 \frac{1}{3}+3 \frac{2}{3} \)(l) \( 4 \frac{2}{3}+3 \frac{1}{4} \)(m) \( \frac{16}{5}-\frac{7}{5} \)(n) \( \frac{4}{3}-\frac{1}{2} \)
- Find the product of:$(1-\frac{1}{2})(1-\frac{1}{3})(1-\frac{1}{4}) \ldots(1-\frac{1}{10})$
- Find the value of $( \frac{125}{64})^2+( \frac{1}{( \frac{625}{256})^{-\frac{1}{4}}})+[( \frac{\sqrt{36}}{\sqrt[3]{64}})^0]^{\frac{1}{2}}$.
- Draw a number line and locate the following points:$\frac{1}{2}, \frac{1}{4}, \frac{3}{4}, \frac{4}{4}$
Kickstart Your Career
Get certified by completing the course
Get Started