Solve the following system of equations: $\frac{5}{x+1} -\frac{2}{y-1}=\frac{1}{2}$ $\frac{10}{x+1}+\frac{2}{y-1}=\frac{5}{2}$, where $x≠-1$ and $y≠1$
Given:
The given system of equations is:
$\frac{5}{x+1} -\frac{2}{y-1}=\frac{1}{2}$
$\frac{10}{x+1}+\frac{2}{y-1}=\frac{5}{2}$, where $x≠-1$ and $y≠1$
To do:
We have to solve the given system of equations.
Solution:
Let $\frac{1}{x+1}=u$ and $\frac{1}{y-1}=v$
This implies, the given system of equations can be written as,
$\frac{5}{x+1} -\frac{2}{y-1}=\frac{1}{2}$
$5u-2v=\frac{1}{2}$
$2(5u-2v)=2(\frac{1}{2})$ (Multiplying by 2 on both sides)
$10u-4v=1$
$10u-4v-1=0$---(i)
$\frac{10}{x+1}+\frac{2}{y-1}=\frac{5}{2}$
$10u+2v=\frac{5}{2}$
$2(10u+2v)=2(\frac{5}{2})$ (Multiplying by 2 on both sides)
$20u+4v=5$
$20u=5-4v$
$u=\frac{5-4v}{20}$---(ii)
Substituting $u=\frac{5-4v}{20}$ in equation (i), we get,
$10(\frac{5-4v}{20})-4v-1=0$
$\frac{5-4v}{2}=4v+1$
$5-4v=2(4v+1)$
$5-4v=8v+2$
$8v+4v=5-2$
$12v=3$
$v=\frac{3}{12}$
$v=\frac{1}{4}$
Using $v=\frac{1}{4}$ in equation (i), we get,
$10u-4(\frac{1}{4})-1=0$
$10u-1-1=0$
$10u-2=0$
$10u=2$
$u=\frac{2}{10}$
$u=\frac{1}{5}$
Using the values of $u$ and $v$, we get,
$\frac{1}{x+1}=\frac{1}{5}$
$\Rightarrow x+1=5$
$\Rightarrow x=5-1$
$\Rightarrow x=4$
$\frac{1}{y-1}=\frac{1}{4}$
$\Rightarrow y-1=4$
$\Rightarrow y=4+1$
$\Rightarrow y=5$
Therefore, the solution of the given system of equations is $x=4$ and $y=5$.   
Related Articles Solve the following system of equations:$\frac{5}{x-1} +\frac{1}{y-2}=2$$\frac{6}{x-1}-\frac{3}{y-2}=1$
Solve the following pairs of equations:\( \frac{1}{2 x}-\frac{1}{y}=-1 \)\( \frac{1}{x}+\frac{1}{2 y}=8, x, y ≠0 \)
If $\frac{x+1}{y} = \frac{1}{2}, \frac{x}{y-2} = \frac{1}{2}$, find x and y.
Simplify: \( \frac{11}{2} x^{2} y-\frac{9}{4} x y^{2}+\frac{1}{4} x y-\frac{1}{14} y^{2} x+\frac{1}{15} y x^{2}+\frac{1}{2} x y \).
Solve the following pairs of equations by reducing them to a pair of linear equations:(i) \( \frac{1}{2 x}+\frac{1}{3 y}=2 \)\( \frac{1}{3 x}+\frac{1}{2 y}=\frac{13}{6} \)(ii) \( \frac{2}{\sqrt{x}}+\frac{3}{\sqrt{y}}=2 \)\( \frac{4}{\sqrt{x}}-\frac{9}{\sqrt{y}}=-1 \)(iii) \( \frac{4}{x}+3 y=14 \)\( \frac{3}{x}-4 y=23 \)(iv) \( \frac{5}{x-1}+\frac{1}{y-2}=2 \)\( \frac{6}{x-1}-\frac{3}{y-2}=1 \)(v) \( \frac{7 x-2 y}{x y}=5 \)\( \frac{8 x+7 y}{x y}=15 \),b>(vi) \( 6 x+3 y=6 x y \)\( 2 x+4 y=5 x y \)4(vii) \( \frac{10}{x+y}+\frac{2}{x-y}=4 \)\( \frac{15}{x+y}-\frac{5}{x-y}=-2 \)(viii) \( \frac{1}{3 x+y}+\frac{1}{3 x-y}=\frac{3}{4} \)\( \frac{1}{2(3 x+y)}-\frac{1}{2(3 x-y)}=\frac{-1}{8} \).
Solve the following system of equations:$\frac{5}{x+y} -\frac{2}{x-y}=-1$$\frac{15}{x+y}+\frac{7}{x-y}=10$
Solve the following system of equations:$\frac{6}{x+y} =\frac{7}{x-y}+3$$\frac{1}{2(x+y)}=\frac{1}{3(x-y)}$
Solve the following system of equations: $\frac{3}{x}\ –\ \frac{1}{y}\ =\ −9$ $\frac{2}{x}\ +\ \frac{3}{y}\ =\ 5$
Solve the following system of equations: $\frac{2}{x}\ +\ \frac{5}{y}\ =\ 1$ $\frac{60}{x}\ +\ \frac{40}{y}\ =\ 19$
Solve the following system of equations:$\frac{3}{x+y} +\frac{2}{x-y}=2$$\frac{9}{x+y}-\frac{4}{x-y}=1$
(i) \( x^{2}-3 x+5-\frac{1}{2}\left(3 x^{2}-5 x+7\right) \)(ii) \( [5-3 x+2 y-(2 x-y)]-(3 x-7 y+9) \)(iii) \( \frac{11}{2} x^{2} y-\frac{9}{4} x y^{2}+\frac{1}{4} x y-\frac{1}{14} y^{2} x+\frac{1}{15} y x^{2}+ \) \( \frac{1}{2} x y \)(iv) \( \left(\frac{1}{3} y^{2}-\frac{4}{7} y+11\right)-\left(\frac{1}{7} y-3+2 y^{2}\right)- \) \( \left(\frac{2}{7} y-\frac{2}{3} y^{2}+2\right) \)(v) \( -\frac{1}{2} a^{2} b^{2} c+\frac{1}{3} a b^{2} c-\frac{1}{4} a b c^{2}-\frac{1}{5} c b^{2} a^{2}+ \) \( \frac{1}{6} c b^{2} a+\frac{1}{7} c^{2} a b+\frac{1}{8} c a^{2} b \).
Solve the following system of equations:$\frac{1}{3x+y} +\frac{1}{3x-y}=\frac{3}{4}$$\frac{1}{2(3x+y)}-\frac{1}{2(3x-y)}=-\frac{1}{8}$
\Find $(x +y) \div (x - y)$. if,(i) \( x=\frac{2}{3}, y=\frac{3}{2} \)(ii) \( x=\frac{2}{5}, y=\frac{1}{2} \)(iii) \( x=\frac{5}{4}, y=\frac{-1}{3} \)(iv) \( x=\frac{2}{7}, y=\frac{4}{3} \)(v) \( x=\frac{1}{4}, y=\frac{3}{2} \)
Solve the following system of equations: $\frac{2}{x}\ +\ \frac{3}{y}\ =\ 2$ $\frac{4}{x}\ –\ \frac{9}{y}\ =\ -1$
Solve: \( \frac{x+5}{2}=1+\frac{2 x-1}{3} \).
Kickstart Your Career
Get certified by completing the course
Get Started