- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Solve the following system of equations:
$\frac{1}{3x+y} +\frac{1}{3x-y}=\frac{3}{4}$
$\frac{1}{2(3x+y)}-\frac{1}{2(3x-y)}=-\frac{1}{8}$
Given:
The given system of equations is:
$\frac{1}{3x+y} +\frac{1}{3x-y}=\frac{3}{4}$
$\frac{1}{2(3x+y)}-\frac{1}{2(3x-y)}=-\frac{1}{8}$
To do:
We have to solve the given system of equations.
Solution:
Let $\frac{1}{3x+y}=u$ and $\frac{1}{3x-y}=v$
This implies, the given system of equations can be written as,
$\frac{1}{3x+y} +\frac{1}{3x-y}=\frac{3}{4}$
$u+v=\frac{3}{4}$
$4(u+v)=3$
$4u+4v=3$
$4u+4v-3=0$---(i)
$\frac{1}{2(3x+y)}-\frac{1}{2(3x-y)}=-\frac{1}{8}$
$\frac{u}{2}-\frac{v}{2}=-\frac{1}{8}$
$8(\frac{u}{2}-\frac{v}{2})=-8(\frac{1}{8})$ (Multiplying both sides by 8)
$4u-4v=-1$
$4u-4v+1=0$---(ii)
Adding equations (i) and (ii), we get,
$4u+4v-3+4u-4v+1=0$
$8u-2=0$
$8u=2$
$u=\frac{2}{8}$
$u=\frac{1}{4}$
Using $u=\frac{1}{4}$ in equation (i), we get,
$4(\frac{1}{4})+4v-3=0$
$1+4v-3=0$
$4v-2=0$
$4v=2$
$v=\frac{2}{4}$
$v=\frac{1}{2}$
Using the values of $u$ and $v$, we get,
$\frac{1}{3x+y}=\frac{1}{4}$
$\Rightarrow 3x+y=4$.....(iii)
$\frac{1}{3x-y}=\frac{1}{2}$
$\Rightarrow 3x-y=2$.....(iv)
Adding equations (iii) and (iv), we get,
$3x+y+3x-y=4+2$
$6x=6$
$x=\frac{6}{6}$
$x=1$
Substituting the value of $x$ in (iv), we get,
$3(1)-y=2$
$y=3-2$
$y=1$
Therefore, the solution of the given system of equations is $x=1$ and $y=1$.