- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Solve the following system of equations:
$\frac{2}{x}\ +\ \frac{5}{y}\ =\ 1$
$\frac{60}{x}\ +\ \frac{40}{y}\ =\ 19$
Given:
The given system of equations is:
$\frac{2}{x}\ +\ \frac{5}{y}\ =\ 1$
$\frac{60}{x}\ +\ \frac{40}{y}\ =\ 19$
To do:
We have to solve the given system of equations.
Solution:
Let $\frac{1}{x}=u$ and $\frac{1}{y}=v$
This implies,
The given system of equations can be written as,
$\frac{2}{x}\ +\ \frac{5}{y}\ =\ 1$
$2u+5v=1$-----(i)
$\frac{60}{x}\ +\ \frac{40}{y}\ =\ 19$
$60u+40v=19$
$60u=19-40v$
$u=\frac{19-40v}{60}$
Substitute $u=\frac{19-40v}{60}$ in equation (i), we get,
$2(\frac{19-40v}{60})+5v=1$
$\frac{19-40v}{30}+5v=1$
Multiplying both sides by $30$, we get,
$30(\frac{19-40v}{30})+30(5v)=30(1)$
$19-40v+150v=30$
$110v=30-19$
$110v=11$
$v=\frac{11}{110}$
$v=\frac{1}{10}$
This implies,
$u=\frac{19-40(\frac{1}{10})}{60}$
$u=\frac{19-4}{60}$
$u=\frac{15}{60}$
$u=\frac{1}{4}$
$x=\frac{1}{u}=\frac{1}{\frac{1}{4}}=4$
$y=\frac{1}{v}=\frac{1}{\frac{1}{10}}=10$
Therefore, the solution of the given system of equations is $x=4$ and $y=10$.