Solve the following system of equations:
$\frac{6}{x+y} =\frac{7}{x-y}+3$
$\frac{1}{2(x+y)}=\frac{1}{3(x-y)}$
Given:
The given system of equations is:
$\frac{6}{x+y} =\frac{7}{x-y}+3$
$\frac{1}{2(x+y)}=\frac{1}{3(x-y)}$
To do:
We have to solve the given system of equations.
Solution:
Let $\frac{1}{x+y}=u$ and $\frac{1}{x-y}=v$
This implies, the given system of equations can be written as,
$\frac{6}{x+y} =\frac{7}{x-y}+3$
$6u=7v+3$
$6u-7v-3=0$---(i)
$\frac{1}{2(x+y)}=\frac{1}{3(x-y)}$
$\frac{u}{2}=\frac{v}{3}$
$3u=2v$
$u=\frac{2v}{3}$---(ii)
Substituting $u=\frac{2v}{3}$ in equation (i), we get,
$6(\frac{2v}{3})-7v-3=0$
$2(2v)-7v=3$
$4v-7v=3$
$-3v=3$
$v=\frac{3}{-3}$
$v=-1$
Using $v=-1$ in equation (i), we get,
$6u-7(-1)-3=0$
$6u+7-3=0$
$6u+4=0$
$6u=-4$
$u=\frac{-4}{6}$
$u=\frac{-2}{3}$
Using the values of $u$ and $v$, we get,
$\frac{1}{x+y}=\frac{-2}{3}$
$\Rightarrow x+y=\frac{-3}{2}$.....(iii)
$\frac{1}{x-y}=-1$
$\Rightarrow x-y=-1$.....(iv)
Adding equations (iii) and (iv), we get,
$x+y+x-y=\frac{-3}{2}+(-1)$
$2x=\frac{-3-1\times2}{2}$
$2x=\frac{-5}{2}$
$x=\frac{\frac{-5}{2}}{2}$
$x=\frac{-5}{4}$
Substituting the value of $x$ in (iv), we get,
$\frac{-5}{4}-y=-1$
$y=\frac{-5}{4}+1$
$y=\frac{-5+4\times1}{4}$
$y=\frac{-1}{4}$
Therefore, the solution of the given system of equations is $x=\frac{-5}{4}$ and $y=\frac{-1}{4}$.
- Related Articles
- Solve the following system of equations:$\frac{3}{x+y} +\frac{2}{x-y}=2$$\frac{9}{x+y}-\frac{4}{x-y}=1$
- Solve the following pairs of equations by reducing them to a pair of linear equations:(i) \( \frac{1}{2 x}+\frac{1}{3 y}=2 \)\( \frac{1}{3 x}+\frac{1}{2 y}=\frac{13}{6} \)(ii) \( \frac{2}{\sqrt{x}}+\frac{3}{\sqrt{y}}=2 \)\( \frac{4}{\sqrt{x}}-\frac{9}{\sqrt{y}}=-1 \)(iii) \( \frac{4}{x}+3 y=14 \)\( \frac{3}{x}-4 y=23 \)(iv) \( \frac{5}{x-1}+\frac{1}{y-2}=2 \)\( \frac{6}{x-1}-\frac{3}{y-2}=1 \)(v) \( \frac{7 x-2 y}{x y}=5 \)\( \frac{8 x+7 y}{x y}=15 \),b>(vi) \( 6 x+3 y=6 x y \)\( 2 x+4 y=5 x y \)4(vii) \( \frac{10}{x+y}+\frac{2}{x-y}=4 \)\( \frac{15}{x+y}-\frac{5}{x-y}=-2 \)(viii) \( \frac{1}{3 x+y}+\frac{1}{3 x-y}=\frac{3}{4} \)\( \frac{1}{2(3 x+y)}-\frac{1}{2(3 x-y)}=\frac{-1}{8} \).
- Solve the following system of equations:$\frac{5}{x+y} -\frac{2}{x-y}=-1$$\frac{15}{x+y}+\frac{7}{x-y}=10$
- Solve the following system of equations:$\frac{5}{x-1} +\frac{1}{y-2}=2$$\frac{6}{x-1}-\frac{3}{y-2}=1$
- Solve the following system of equations: $\frac{3}{x}\ –\ \frac{1}{y}\ =\ −9$ $\frac{2}{x}\ +\ \frac{3}{y}\ =\ 5$
- Solve the following system of equations: $\frac{x}{7}\ +\ \frac{y}{3}\ =\ 5$ $\frac{x}{2}\ –\ \frac{y}{9}\ =\ 6$
- Solve the following system of equations: $\frac{2}{x}\ +\ \frac{3}{y}\ =\ 2$ $\frac{4}{x}\ –\ \frac{9}{y}\ =\ -1$
- Solve the following pairs of equations:\( \frac{2 x y}{x+y}=\frac{3}{2} \)\( \frac{x y}{2 x-y}=\frac{-3}{10}, x+y ≠ 0,2 x-y ≠ 0 \)
- \Find $(x +y) \div (x - y)$. if,(i) \( x=\frac{2}{3}, y=\frac{3}{2} \)(ii) \( x=\frac{2}{5}, y=\frac{1}{2} \)(iii) \( x=\frac{5}{4}, y=\frac{-1}{3} \)(iv) \( x=\frac{2}{7}, y=\frac{4}{3} \)(v) \( x=\frac{1}{4}, y=\frac{3}{2} \)
- Solve the following pairs of equations:\( \frac{1}{2 x}-\frac{1}{y}=-1 \)\( \frac{1}{x}+\frac{1}{2 y}=8, x, y ≠ 0 \)
- Solve the following system of equations by the method of cross-multiplication: $\frac{5}{(x\ +\ y)}\ –\ \frac{2}{(x\ -\ y)}\ =\ -1$ $\frac{15}{(x\ +\ y)}\ +\ \frac{7}{(x\ –\ y)}\ =\ 10$
- Solve the following system of equations:$\frac{10}{x+y} +\frac{2}{x-y}=4$$\frac{15}{x+y}-\frac{9}{x-y}=-2$
- Solve the following system of equations:$\frac{5}{x+1} -\frac{2}{y-1}=\frac{1}{2}$$\frac{10}{x+1}+\frac{2}{y-1}=\frac{5}{2}$, where $x≠-1$ and $y≠1$
- Solve the following system of equations: $\frac{x}{3}\ +\ \frac{y}{4}\ =\ 11$ $\frac{5x}{6}\ −\ \frac{y}{3}\ =\ −7$
- Simplify: $\frac{x^{-3}-y^{-3}}{x^{-3} y^{-1}+(x y)^{-2}+y^{-1} x^{-3}}$.
Kickstart Your Career
Get certified by completing the course
Get Started