# Simplify: $\frac{11}{2} x^{2} y-\frac{9}{4} x y^{2}+\frac{1}{4} x y-\frac{1}{14} y^{2} x+\frac{1}{15} y x^{2}+\frac{1}{2} x y$.

Given:

$\frac{11}{2} x^{2} y-\frac{9}{4} x y^{2}+\frac{1}{4} x y-\frac{1}{14} y^{2} x+\frac{1}{15} y x^{2}+\frac{1}{2} x y$.

To do:

We have to simplify the given expression.

Solution:

We know that like terms can be added and subtracted in an expression.

Therefore,

$\frac{11}{2} x^{2} y-\frac{9}{4} x y^{2}+\frac{1}{4} x y-\frac{1}{14} y^{2} x+\frac{1}{15} y x^{2}+\frac{1}{2} x y=(\frac{11}{2}+\frac{1}{15})x^2y-(\frac{9}{4}+\frac{1}{14})xy^2+(\frac{1}{4}+\frac{1}{2})xy$

$=\left(\frac{11\times 15+1\times 2}{30}\right) x^{2} y-\left(\frac{9\times 7+1\times 2}{28}\right) xy^{2} +\left(\frac{1+1\times 2}{4}\right) xy$

$=\left(\frac{165+2}{30}\right) x^{2} y-\left(\frac{63+2}{28}\right) xy^{2} +\left(\frac{1+2}{4}\right) xy$

$=\frac{167}{30} x^{2} y-\frac{65}{28} xy^{2} +\frac{3}{4} xy$.

Tutorialspoint

Simply Easy Learning

Updated on: 10-Oct-2022

45 Views

Get certified by completing the course