- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Prove that both the roots of the equation $(x-a)(x-b)+(x-b)(x-c)+(x-c)(x-a)=0$ are real but they are equal only when $a=b=c$.
Given:
Given quadratic equation is $(x-a)(x-b)+(x-b)(x-c)+(x-c)(x-a)=0$.
To do:
We have to prove that both the roots of the equation $(x-a)(x-b)+(x-b)(x-c)+(x-c)(x-a)=0$ are real but they are equal only when $a=b=c$.
Solution:
$(x-a)(x-b)+(x-b)(x-c)+(x-c)(x-a)=0$
$x^2-ax-bx+ab+x^2-bx-cx+bc+x^2-cx-ax+ac=0$
$3x^2+(-a-b-b-c-c-a)x+(ab+bc+ca)=0$
$3x^2-2(a+b+c)x+(ab+bc+ca)=0$
Comparing the given quadratic equation with the standard form of the quadratic equation $ax^2+bx+c=0$, we get,
$a=3, b=-2(a+b+c)$ and $c=(ab+bc+ca)$.
The discriminant of the standard form of the quadratic equation $ax^2+bx+c=0$ is $D=b^2-4ac$.
$D=[-2(a+b+c)]^2-4(3)(ab+bc+ca)$
$D=4(a^2+b^2+c^2+2ab+2bc+2ca)-12(ab+bc+ca)$
$D=4(a^2+b^2+c^2+2ab+2bc+2ca-3ab-3bc-3ca)$
$D=4(a^2+b^2+c^2-ab-bc-ca)$
$D=2(2a^2+2b^2+2c^2-2ab-2bc-2ca)$
$D=2(a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ca+c^2)$
$D=2[(a-b)^2+(b-c)^2+(c-a)^2]$
$D>0$ or $D=0$ when $a=b=c$
Therefore, the roots of the equation $(x-a)(x-b)+(x-b)(x-c)+(x-c)(x-a)=0$ are real but they are equal only when $a=b=c$.
- Related Articles
- If the roots of the equation $(b-c)x^2+(c-a)x+(a-b)=0$ are equal. Prove that $2b=a+c$
- If the roots of the equation $(b-c)x^2+(c-a)x+(a-b)=0$ are equal, then prove that $2b=a+c$.
- If the roots of the equation $a(b-c) x^2+b(c-a) x+c(a-b) =0$ are equal, then prove that $b(a+c) =2ac$.
- Find the zero of the polynomial in each of the following cases:(i) \( p(x)=x+5 \)(ii) \( p(x)=x-5 \)(iii) \( p(x)=2 x+5 \)(iv) \( p(x)=3 x-2 \)(v) \( p(x)=3 x \)(vi) \( p(x)=a x, a ≠ 0 \)(vii) \( p(x)=c x+d, c ≠ 0, c, d \) are real numbers.
- If roots of equation $x^2+x+1=0$ are $a,\ b$ and roots of $x^2+px+q=0$ are $\frac{a}{b},\ \frac{b}{a}$; then find the value of $p+q$.
- Prove that\( \frac{1}{1+x^{b-a}+x^{c-a}}+\frac{1}{1+x^{a-b}+x^{c-b}}+\frac{1}{1+x^{b-c}+x^{a-c}}=1 \)
- If the roots of the equation $(a^2+b^2)x^2-2(ac+bd)x+(c^2+d^2)=0$ are equal, prove that $\frac{a}{b}=\frac{c}{d}$.
- Let $f(x)=3ax^2−4bx+c$ $(a,b,c∈R,a\neq 0)$ where $a,\ b,\ c$ are in A.P. Then how many roots the equation $f(x)=0$$ have? Are they real?
- Show that the equation $2(a^2+b^2)x^2+2(a+b)x+1=0$ has no real roots, when a≠b.
- Prove that:\( \left(\frac{x^{a}}{x^{b}}\right)^{c} \times\left(\frac{x^{b}}{x^{c}}\right)^{a} \times\left(\frac{x^{c}}{x^{a}}\right)^{b}=1 \)
- Solve the following pairs of linear equations: (i) \( p x+q y=p-q \)$q x-p y=p+q$(ii) \( a x+b y=c \)$b x+a y=1+c$,b>(iii) \( \frac{x}{a}-\frac{y}{b}=0 \)$a x+b y=a^{2}+b^{2}$(iv) \( (a-b) x+(a+b) y=a^{2}-2 a b-b^{2} \)$(a+b)(x+y)=a^{2}+b^{2}$(v) \( 152 x-378 y=-74 \)$-378 x+152 y=-604$.
- Find the value of $(x-a)^3 + (x-b)^3 + (x-c)^3 - 3 (x-a)(x-b)(x-c)$ if $a+b+c = 3x$
- If the roots of the equation $(c^2-ab)x^2-2(a^2-bc)x+b^2-ac=0$ are equal, prove that either $a=0$ or $a^3+b^3+c^3=3abc$.
- Simplify:\( \left(\frac{x^{a+b}}{x^{c}}\right)^{a-b}\left(\frac{x^{b+c}}{x^{a}}\right)^{b-c}\left(\frac{x^{c+a}}{x^{b}}\right)^{c-a} \)
- Prove that:\( \left(\frac{x^{a}}{x^{b}}\right)^{a^{2}+a b+b^{2}} \times\left(\frac{x^{b}}{x^{c}}\right)^{b^{2}+b c+c^{2}} \times\left(\frac{x^{c}}{x^{a}}\right)^{c^{2}+c a+a^{2}}=1 \)
