- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Simplify:( left(frac{x^{a+b}}{x^{c}}right)^{a-b}left(frac{x^{b+c}}{x^{a}}right)^{b-c}left(frac{x^{c+a}}{x^{b}}right)^{c-a} )
Given:
\( \left(\frac{x^{a+b}}{x^{c}}\right)^{a-b}\left(\frac{x^{b+c}}{x^{a}}\right)^{b-c}\left(\frac{x^{c+a}}{x^{b}}\right)^{c-a} \)
To do:
We have to simplify the given expression.
Solution:
We know that,
$(a^{m})^{n}=a^{m n}$
$a^{m} \times a^{n}=a^{m+n}$
$a^{m} \div a^{n}=a^{m-n}$
$a^{0}=1$
Therefore,
$(\frac{x^{a+b}}{x^{c}})^{a-b}(\frac{x^{b+c}}{x^{a}})^{b-c}(\frac{x^{c+a}}{x^{b}})^{c-a}=(x^{a+b-c})^{a-b} \times (x^{b+c-a})^{b-c} \times (x^{c+a-b})^{c-a}$
$=x^{(a+b-c)(a-b)} x^{(b+c-a)(b-c)} x^{(c+a-b)(c-a)}$
$=x^{a^{2}-b^{2}-a c+b c} \times x^{b^{2}-c^{2}-a b+a c} \times x^{c^{2}-a^{2}-b c+a b}$
$=x^{a^{2}-b^{2}-a c+b c+b^{2}-c^{2}-a b+a c+c^{2}-a^{2}-b c+a b}$
$=x^{0}$
$=1$
Hence, $(\frac{x^{a+b}}{x^{c}})^{a-b}(\frac{x^{b+c}}{x^{a}})^{b-c}(\frac{x^{c+a}}{x^{b}})^{c-a}=1$.
- Related Articles
- Show that:( left[left{frac{x^{a(a-b)}}{x^{a(a+b)}}right} pleft{frac{x^{b(b-a)}}{x^{b(b+a)}}right}right]^{a+b}=1 )
- Prove that:( left(frac{x^{a}}{x^{b}}right)^{c} timesleft(frac{x^{b}}{x^{c}}right)^{a} timesleft(frac{x^{c}}{x^{a}}right)^{b}=1 )
- Show that:( left(frac{x^{a^{2}+b^{2}}}{x^{a b}}right)^{a+b}left(frac{x^{b^{2}+c^{2}}}{x^{b c}}right)^{b+c}left(frac{x^{c^{2}+a^{2}}}{x^{a c}}right)^{a+c}= x^{2left(a^{3}+b^{3}+c^{3}right)} )
- Prove that:( left(frac{x^{a}}{x^{b}}right)^{a^{2}+a b+b^{2}} timesleft(frac{x^{b}}{x^{c}}right)^{b^{2}+b c+c^{2}} timesleft(frac{x^{c}}{x^{a}}right)^{c^{2}+c a+a^{2}}=1 )
- Prove that:( left(frac{x^{a}}{x^{-b}}right)^{a^{2}-a b+b^{2}} timesleft(frac{x^{b}}{x^{-c}}right)^{b^{2}-b c+c^{2}} timesleft(frac{x^{c}}{x^{-a}}right)^{c^{2}-c a+a^{2}}=1 )
- Show that:( left(x^{frac{1}{a-b}}right)^{frac{1}{a-c}}left(x^{frac{1}{b-c}}right)^{frac{1}{b-a}}left(x^{frac{1}{c-a}}right)^{frac{1}{c-b}}=1 )
- Find the numerical value of ( P: Q ) where ( mathrm{P}=left(frac{x^{m}}{x^{n}}right)^{m+n-l} timesleft(frac{x^{n}}{x^{l}}right)^{n+l-m} timesleft(frac{x^{l}}{x^{m}}right)^{l+m-n} ) and( mathrm{Q}=left(x^{1 /(a-b)}right)^{1 /(a-c)} timesleft(x^{1 /(b-c)}right)^{1 /(b-a)} timesleft(x^{1 /(c-a)}right)^{1 /(c-b)} )where ( a, b, c ) being all different.A. ( 1: 2 )B. ( 2: 1 )C. ( 1: 1 )D. None of these
- Find and correct the errors in the following.(a) ( (2 x+5)^{2}=4 x^{2}+25 )(b) ( left(x-frac{1}{2}right)left(x-frac{1}{2}right)=x^{2}-frac{1}{4} )(c) ( (5 a-b)^{2}=10 a^{2}-5 a b+b^{2} )(d) ( (p-3)(p-7)=p^{2}+21 )
- Find the product of the following binomials:(i) ( (2 x+y)(2 x+y) )(ii) ( (a+2 b)(a-2 b) )(iii) ( left(a^{2}+b cright)left(a^{2}-b cright) )(iv) ( left(frac{4 x}{5}-frac{3 y}{4}right)left(frac{4 x}{5}+frac{3 y}{4}right) )(v) ( left(2 x+frac{3}{y}right)left(2 x-frac{3}{y}right) )(vi) ( left(2 a^{3}+b^{3}right)left(2 a^{3}-b^{3}right) )(vii) ( left(x^{4}+frac{2}{x^{2}}right)left(x^{4}-frac{2}{x^{2}}right) )(viii) ( left(x^{3}+frac{1}{x^{3}}right)left(x^{3}-frac{1}{x^{3}}right) ).
- Simplify:( left(x^{4}+frac{1}{x^{4}}right)left(x+frac{1}{x}right) )
- Solve the following pairs of linear equations: (i) ( p x+q y=p-q )$q x-p y=p+q$(ii) ( a x+b y=c )$b x+a y=1+c$,b>(iii) ( frac{x}{a}-frac{y}{b}=0 )$a x+b y=a^{2}+b^{2}$(iv) ( (a-b) x+(a+b) y=a^{2}-2 a b-b^{2} )$(a+b)(x+y)=a^{2}+b^{2}$(v) ( 152 x-378 y=-74 )$-378 x+152 y=-604$.
- Show that:( left(x^{a-b}right)^{a+b}left(x^{b-c}right)^{b+c}left(x^{c-a}right)^{c+a}=1 )
- Verify whether the following are zeroes of the polynomial, indicated against them.(i) ( p(x)=3 x+1, x=-frac{1}{3} )(ii) ( p(x)=5 x-pi, x=frac{4}{5} )(iii) ( p(x)=x^{2}-1, x=1,-1 )(iv) ( p(x)=(x+1)(x-2), x=-1,2 )(v) ( p(x)=x^{2}, x=0 )(vi) ( p(x)=l x+m, x=-frac{m}{l} )(vii) ( p(x)=3 x^{2}-1, x=-frac{1}{sqrt{3}}, frac{2}{sqrt{3}} )(viii) ( p(x)=2 x+1, x=frac{1}{2} )
- Prove that( frac{1}{1+x^{b-a}+x^{c-a}}+frac{1}{1+x^{a-b}+x^{c-b}}+frac{1}{1+x^{b-c}+x^{a-c}}=1 )
- Find the zero of the polynomial in each of the following cases:(i) ( p(x)=x+5 )(ii) ( p(x)=x-5 )(iii) ( p(x)=2 x+5 )(iv) ( p(x)=3 x-2 )(v) ( p(x)=3 x )(vi) ( p(x)=a x, a ≠ 0 )(vii) ( p(x)=c x+d, c ≠ 0, c, d ) are real numbers.
