If the roots of the equation $(b-c)x^2+(c-a)x+(a-b)=0$ are equal, then prove that $2b=a+c$.
Given:
Given quadratic equation is $(b-c)x^2+(c-a)x+(a-b)=0$. The roots of the given quadratic equation are equal.
To do:
We have to prove that $2b=a+c$.
Solution:
$(b-c)x^2+(c-a)x+(a-b)=0$
Comparing the given quadratic equation with the standard form of the quadratic equation $ax^2+bx+c=0$, we get,
$a=(b-c), b=(c-a)$ and $c=(a-b)$.
The discriminant of the standard form of the quadratic equation $ax^2+bx+c=0$ is $D=b^2-4ac$.
$D=(c-a)^2-4(b-c)(a-b)$
$D=c^2+a^2-2ac-4ab+4b^2+4ca-4bc$
$D=a^2+4b^2+c^2+2ac-4ab-4bc$
$D=(a-2b+c)^2$ ($(a+b+c)^2=a^2+b^2+c^2+2ab+2bc+2ca$)
The given quadratic equation has equal roots if $D=0$.
This implies,
$(a-2b+c)^2=0$
$a-2b+c=0$
$a+c=2b$
Hence proved.
- Related Articles
- If the roots of the equation $(b-c)x^2+(c-a)x+(a-b)=0$ are equal. Prove that $2b=a+c$
- If the roots of the equation $a(b-c) x^2+b(c-a) x+c(a-b) =0$ are equal, then prove that $b(a+c) =2ac$.
- Prove that both the roots of the equation $(x-a)(x-b)+(x-b)(x-c)+(x-c)(x-a)=0$ are real but they are equal only when $a=b=c$.
- If the roots of the equation $(a^2+b^2)x^2-2(ac+bd)x+(c^2+d^2)=0$ are equal, prove that $\frac{a}{b}=\frac{c}{d}$.
- If the roots of the equation $(c^2-ab)x^2-2(a^2-bc)x+b^2-ac=0$ are equal, prove that either $a=0$ or $a^3+b^3+c^3=3abc$.
- If the equation $(1+m^2)x^2+2mcx+(c^2-a^2)=0$ has equal roots, prove that $c^2=a^2(1+m^2)$.
- If roots of equation $x^2+x+1=0$ are $a,\ b$ and roots of $x^2+px+q=0$ are $\frac{a}{b},\ \frac{b}{a}$; then find the value of $p+q$.
- Let $f(x)=3ax^2−4bx+c$ $(a,b,c∈R,a\neq 0)$ where $a,\ b,\ c$ are in A.P. Then how many roots the equation $f(x)=0$$ have? Are they real?
- If $\alpha,\ \beta$ are the roots of the equation $ax^2+bx+c=0$, then find the roots of the equation $ax^2+bx(x+1)+c(x+1)^2=0$.
- If the roots of the equations $ax^2+2bx+c=0$ and $bx^2-2\sqrt{ac}x+b=0$ are simultaneously real, then prove that $b^2=ac$.
- If $ad \neq bc$, then prove that the equation $\left( a^{2} +b^{2}\right) x^{2} +2( ac\ +\ bd) \ x+\left( c^{2} +d^{2}\right) =0$ has no real roots.
- Determine the nature of the roots of the following quadratic equations: $(b+c)x^2-(a+b+c)x+a=0$
- Prove that:\( \left(\frac{x^{a}}{x^{b}}\right)^{a^{2}+a b+b^{2}} \times\left(\frac{x^{b}}{x^{c}}\right)^{b^{2}+b c+c^{2}} \times\left(\frac{x^{c}}{x^{a}}\right)^{c^{2}+c a+a^{2}}=1 \)
- Prove that:\( \left(\frac{x^{a}}{x^{-b}}\right)^{a^{2}-a b+b^{2}} \times\left(\frac{x^{b}}{x^{-c}}\right)^{b^{2}-b c+c^{2}} \times\left(\frac{x^{c}}{x^{-a}}\right)^{c^{2}-c a+a^{2}}=1 \)
- Show that the equation $2(a^2+b^2)x^2+2(a+b)x+1=0$ has no real roots, when a≠b.
Kickstart Your Career
Get certified by completing the course
Get Started