- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
If roots of equation $x^2+x+1=0$ are $a,\ b$ and roots of $x^2+px+q=0$ are $\frac{a}{b},\ \frac{b}{a}$; then find the value of $p+q$.
Given: Roots of equation $x^2+x+1=0$ are $a,\ b$ and roots of $x^2+px+q=0$ are $\frac{a}{b},\ \frac{b}{a}$
To do: To find the value of $p+q$.
Solution:
Given, roots of the equation $x^2+x+1=0$ are $a$ and $b$.
$\therefore$ Sum of roots, $a+b=-\frac{1}{1}=-1$
Product of roots, $ab=\frac{1}{1}=1\ .........\ ( i)$
Again, $\frac{a}{b}$ and $\frac{b}{a}$ the equation $x^2+px+q=0$
$\therefore$ Sum of roots, $\frac{a}{b}+\frac{b}{a}=-p$
Product of roots, $\frac{a}{b}\times\frac{b}{a}=q$
$\Rightarrow 1=q\ .......\ ( ii)$
Now, $\frac{a}{b}+\frac{b}{a}=-p$
$\Rightarrow \frac{a^2+b^2}{ab}=-p$
$\Rightarrow \frac{(a+b)^2-2ab}{ab}=-p$
$\Rightarrow \frac{( -1)^2-2( 1)}{1}=-p$ [from equation (i)]
$\Rightarrow \frac{1-2}{1}=-p$
$\Rightarrow p=1$
$\therefore p+q=1+1=2$.
- Related Articles
- If p, q are real and p≠q, then show that the roots of the equation $(p-q)x^2+5(p+q)x-2(p-q)=0$ are real and unequal.
- If $x=\frac{2}{3}$ and $x=-3$ are the roots of the equation $ax^2+7x+b=0$, find the values of $a$ and $b$.
- If the roots of the equation $(a^2+b^2)x^2-2(ac+bd)x+(c^2+d^2)=0$ are equal, prove that $\frac{a}{b}=\frac{c}{d}$.
- Solve the following pairs of linear equations: (i) \( p x+q y=p-q \)$q x-p y=p+q$(ii) \( a x+b y=c \)$b x+a y=1+c$,b>(iii) \( \frac{x}{a}-\frac{y}{b}=0 \)$a x+b y=a^{2}+b^{2}$(iv) \( (a-b) x+(a+b) y=a^{2}-2 a b-b^{2} \)$(a+b)(x+y)=a^{2}+b^{2}$(v) \( 152 x-378 y=-74 \)$-378 x+152 y=-604$.
- If the roots of the equation $(b-c)x^2+(c-a)x+(a-b)=0$ are equal, then prove that $2b=a+c$.
- If $x = 0$ and $x = -1$ are the roots of the polynomial $f(x) = 2x^3 - 3x^2 + ax + b$, find the value of $a$ and $b$.
- If the roots of the equation $a(b-c) x^2+b(c-a) x+c(a-b) =0$ are equal, then prove that $b(a+c) =2ac$.
- If $\alpha,\ \beta$ are the roots of the equation $ax^2+bx+c=0$, then find the roots of the equation $ax^2+bx(x+1)+c(x+1)^2=0$.
- If the roots of the equation $(b-c)x^2+(c-a)x+(a-b)=0$ are equal. Prove that $2b=a+c$
- If the quadratic equation $px^{2}-2\sqrt{5}x+15=0$ has two equal roots, then find the value of $p$.
- If \( x^{2}+\frac{1}{x^{2}}=62 \), find the value of(a) \( x+\frac{1}{x} \)(b) \( x-\frac{1}{x} \)
- Show that the equation $2(a^2+b^2)x^2+2(a+b)x+1=0$ has no real roots, when a≠b.
- If $1$ is a root of the quadratic equation $3x^2 + ax - 2 = 0$ and the quadratic equation $a(x^2 + 6x) - b = 0$ has equal roots, find the value of b.
- If $x^2-6x+1=0$, then find the value of $x^2+\frac{1}{x^2}$.
- If $-5$ is a root of the quadratic equation $2x^2 + px -15 = 0$ and the quadratic equation $p(x^2 + x) + k = 0$ has equal roots, find the value of k.
