- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Find the value of $(x-a)^3 + (x-b)^3 +
(x-c)^3 - 3 (x-a)(x-b)(x-c)$ if $a+b+c = 3x$
Given :
$a + b + c = 3x$
To find :
We have to find the value of $(x-a)^3 + (x-b)^3 + (x-c)^3 - 3 (x-a)(x-b)(x-c)$.
Solution :
We know that,
If $a + b + c = 0$ then $a^3+ b^3+ c^3=3abc$.
$(x-a)+(x-b)+(x-c)= 3x-(a+b+c)$
$= 3x-3x$
= 0
Therefore,
$(x-a)^3 + (x-b)^3 + (x-c)^3 - 3 (x-a)(x-b)(x-c) = 3 (x-a)(x-b)(x-c)$
$(x-a)^3 + (x-b)^3 + (x-c)^3 - 3 (x-a)(x-b)(x-c) = 0$. 
The value of $(x-a)^3 + (x-b)^3 + (x-c)^3 - 3 (x-a)(x-b)(x-c)$ is 0.
- Related Articles
- Find the zero of the polynomial in each of the following cases:(i) ( p(x)=x+5 )(ii) ( p(x)=x-5 )(iii) ( p(x)=2 x+5 )(iv) ( p(x)=3 x-2 )(v) ( p(x)=3 x )(vi) ( p(x)=a x, a ≠0 )(vii) ( p(x)=c x+d, c ≠0, c, d ) are real numbers.
- Use the Factor Theorem to determine whether ( g(x) ) is a factor of ( p(x) ) in each of the following cases:(i) ( p(x)=2 x^{3}+x^{2}-2 x-1, g(x)=x+1 )(ii) ( p(x)=x^{3}+3 x^{2}+3 x+1, g(x)=x+2 )(iii) ( p(x)=x^{3}-4 x^{2}+x+6, g(x)=x-3 )
- Find the value of $p(x) =3x+1$ at $x=frac{1}{3}$.
- For which values of ( a ) and ( b ), are the zeroes of ( q(x)=x^{3}+2 x^{2}+a ) also the zeroes of the polynomial ( p(x)=x^{5}-x^{4}-4 x^{3}+3 x^{2}+3 x+b ) ? Which zeroes of ( p(x) ) are not the zeroes of ( q(x) ) ?
- If $( frac{( 3 x-4)^{3}-( x+1)^{3}}{( 3 x-4)^{3}+( x+1)^{3}}=frac{61}{189})$, find the value of $x$.
- Verify whether the following are zeroes of the polynomial, indicated against them.(i) ( p(x)=3 x+1, x=-frac{1}{3} )(ii) ( p(x)=5 x-pi, x=frac{4}{5} )(iii) ( p(x)=x^{2}-1, x=1,-1 )(iv) ( p(x)=(x+1)(x-2), x=-1,2 )(v) ( p(x)=x^{2}, x=0 )(vi) ( p(x)=l x+m, x=-frac{m}{l} )(vii) ( p(x)=3 x^{2}-1, x=-frac{1}{sqrt{3}}, frac{2}{sqrt{3}} )(viii) ( p(x)=2 x+1, x=frac{1}{2} )
- If ( x=2+sqrt{3} ), find the value of ( x^{3}+frac{1}{x^{3}} ).
- If $frac{3}{4}(x-1)=x-3$, find the value of $x$.
- divide the polynomial $p( x)$ by the polynomial $g( x)$ and find the quotient and remainder in each of the following: $( p(x)=x^{3}-3 x^{2}+5 x-3$, $g(x)=x^{2}-2$.
- Divide the polynomial $p(x)$ by the polynomial $g(x)$ and find the quotient and remainder, in each of the following:(i) $p(x) = x^3 - 3x^2 + 5x -3, g(x) = x^2-2$(ii) $p(x) =x^4 - 3x^2 + 4x + 5, g(x) = x^2 + 1 -x$(iii) $p(x) = x^4 - 5x + 6, g(x) = 2 -x^2$
- If ( x+frac{1}{x}=5 ), find the value of ( x^{3}+frac{1}{x^{3}} ).
- If ( x-frac{1}{x}=7 ), find the value of ( x^{3}-frac{1}{x^{3}} ).
- If ( x-frac{1}{x}=5 ), find the value of ( x^{3}-frac{1}{x^{3}} ).
- If ( x-frac{1}{x}=3+2 sqrt{2} ), find the value of ( x^{3}- frac{1}{x^{3}} ).
- Which of the following is not a polynomial?(a) $x^{2}+sqrt{2} x+3$ (b) $x^{3}+3 x^{2}-3$ (c) $6 x+4$ d) $x^{2}-sqrt{2 x}+6$

Advertisements