In $ \triangle \mathrm{XYZ}, \angle \mathrm{Y}=90^{\circ} $ and $ \mathrm{YM} $ is an altitude. If $ \mathrm{XM}=\sqrt{12} $ and $ \mathrm{ZM}=\sqrt{3} $, find $ \mathrm{YM} $.
Given:
In \( \triangle \mathrm{XYZ}, \angle \mathrm{Y}=90^{\circ} \) and \( \mathrm{YM} \) is an altitude.
\( \mathrm{XM}=\sqrt{12} \) and \( \mathrm{ZM}=\sqrt{3} \)
To do:
We have to find \( \mathrm{YM} \).
Solution:
In $\triangle XYZ$,
By Pythagoras theorem,
$XZ^2 =XY^2+YZ^2$
$(\sqrt{12}+\sqrt{3})^2=XY^2+YZ^2$
$(\sqrt{12})^2+(\sqrt{3})^2+2\times\sqrt{12}\times\sqrt{3}=XY^2+YZ^2$
$12+3+2\times\sqrt{36}=XY^2+YZ^2$
$15+2\times6=XY^2+YZ^2$
$15+12=XY^2+YZ^2$
$27=XY^2+YZ^2$.........(i)
Similarly,
In $\triangle XYM$,
By Pythagoras theorem,
$XY^2 =XM^2+YM^2$
$XY^2=(\sqrt{12})^2+YM^2$
$XY^2=12+YM^2$......(ii)
In $\triangle YMZ$,
By Pythagoras theorem,
$YZ^2 =MZ^2+YM^2$
$YZ^2=(\sqrt{3})^2+YM^2$
$YZ^2=3+YM^2$......(iii)
From (i), (ii) and (iii),
$27=12+YM^2+3+YM^2$
$27-15=YM^2+YM^2$
$12=2YM^2$
$YM^2=6$
$YM=\sqrt{6}$
Hence, $YM=\sqrt{6}$
Related Articles In \( \triangle \mathrm{ABC}, \angle \mathrm{B}=90^{\circ} \) and \( \mathrm{BM} \) is an altitude. If \( \mathrm{BM}=\sqrt{30} \) and \( \mathrm{CM}=3 \), find \( \mathrm{AC} \).
In \( \triangle \mathrm{ABC}, \angle \mathrm{B}=90^{\circ} \) and \( \mathrm{BM} \) is an altitude. If \( \mathrm{AB}=2 \sqrt{10} \) and \( \mathrm{AM}=5 \), find \( \mathrm{CM} \).
In \( \triangle \mathrm{ABC}, \angle \mathrm{B}=90^{\circ} \) and \( \mathrm{BM} \) is an altitude. If \( \mathrm{AM}=\mathrm{BM}=12 \), find \( \mathrm{AC} \).
In \( \triangle \mathrm{ABC}, \angle \mathrm{A}=\angle \mathrm{B}+\angle \mathrm{C} \) and \( \mathrm{AM} \) is an altitude. If \( \mathrm{AM}=\sqrt{12} \) and \( \mathrm{BC}=8 \), find BM.
Construct a triangle \( \mathrm{XYZ} \) in which \( \angle \mathrm{Y}=30^{\circ}, \angle \mathrm{Z}=90^{\circ} \) and \( \mathrm{XY}+\mathrm{YZ}+\mathrm{ZX}=11 \mathrm{~cm} \).
In \( \triangle \mathrm{ABC}, \angle \mathrm{A}=90^{\circ} \) and \( \mathrm{AM} \) is an altitude. If \( \mathrm{BM}=6 \) and \( \mathrm{CM}=2 \), find the perimeter of \( \triangle \mathrm{ABC} \).
In \( \triangle \mathrm{ABC}, \angle \mathrm{B}=90^{\circ} \) and \( \mathrm{BM} \) is an altitude. If \( \mathrm{BM}=10 \) and \( \mathrm{CM}=5 \), find the perimeter of \( \triangle \mathrm{ABC} \).
In \( \triangle \mathrm{ABC}, \angle \mathrm{C}=90^{\circ}, \mathrm{AB}=12.5 \) and \( \mathrm{BC}=12 \). Find \( \mathrm{AC} \).
In Fig. \( 6.40, \angle \mathrm{X}=62^{\circ}, \angle \mathrm{XYZ}=54^{\circ} \). If \( \mathrm{YO} \) and \( Z \mathrm{O} \) are the bisectors of \( \angle \mathrm{XYZ} \) and \( \angle \mathrm{XZY} \) respectively of \( \triangle \mathrm{XYZ} \) find \( \angle \mathrm{OZY} \) and \( \angle \mathrm{YOZ} \)."\n
In \( \triangle \mathrm{ABC}, \angle \mathrm{B}=90^{\circ} \) and \( \mathrm{BM} \) is an altitude. If \( \mathrm{AM}=2 x^{2} \) and \( \mathrm{CM}=8 x^{2} \), find \( \mathrm{BM} \), AB and \( \mathrm{BC} \).
In \( \triangle \mathrm{ABC}, \angle \mathrm{B}=90^{\circ} \) and \( \mathrm{BM} \) is a median. If \( \mathrm{AB}=15 \) and \( \mathrm{BC}=20 \), find \( \mathrm{BM} \).
\( \mathrm{ABC} \) is a right angled triangle in which \( \angle \mathrm{A}=90^{\circ} \) and \( \mathrm{AB}=\mathrm{AC} \). Find \( \angle \mathrm{B} \) and \( \angle \mathrm{C} \).
In \( \triangle \mathrm{ABC}, \angle \mathrm{B}=90^{\circ} \) and \( \mathrm{BM} \) is an altitude. If \( \mathrm{AM}=x+7, \mathrm{BM}=x+2 \) and \( \mathrm{CM}=x \), findthe value of \( x \).
In \( \Delta \mathrm{XYZ}, \quad \angle \mathrm{Y}=90^{\circ} \). If \( \mathrm{XY}=a^{2}-\mathrm{b}^{2} \) and \( \mathrm{YZ}=2 a b \), find \( \mathrm{XZ} .(a>b>0) \).
Name the types of following triangles:(a) Triangle with lengths of sides \( 7 \mathrm{~cm}, 8 \mathrm{~cm} \) and \( 9 \mathrm{~cm} \).(b) \( \triangle \mathrm{ABC} \) with \( \mathrm{AB}=8.7 \mathrm{~cm}, \mathrm{AC}=7 \mathrm{~cm} \) and \( \mathrm{BC}=6 \mathrm{~cm} \).(c) \( \triangle \mathrm{PQR} \) such that \( \mathrm{PQ}=\mathrm{QR}=\mathrm{PR}=5 \mathrm{~cm} \).(d) \( \triangle \mathrm{DEF} \) with \( \mathrm{m} \angle \mathrm{D}=90^{\circ} \)(e) \( \triangle \mathrm{XYZ} \) with \( \mathrm{m} \angle \mathrm{Y}=90^{\circ} \) and \( \mathrm{XY}=\mathrm{YZ} \).(f) \( \Delta \mathrm{LMN} \) with \( \mathrm{m} \angle \mathrm{L}=30^{\circ}, \mathrm{m} \angle \mathrm{M}=70^{\circ} \) and \( \mathrm{m} \angle \mathrm{N}=80^{\circ} \).
Kickstart Your Career
Get certified by completing the course
Get Started