In $ \triangle \mathrm{ABC}, \angle \mathrm{B}=90^{\circ} $ and $ \mathrm{BM} $ is an altitude. If $ \mathrm{AM}=2 x^{2} $ and $ \mathrm{CM}=8 x^{2} $, find $ \mathrm{BM} $, AB and $ \mathrm{BC} $.
Given:
In \( \triangle \mathrm{ABC}, \angle \mathrm{B}=90^{\circ} \) and \( \mathrm{BM} \) is an altitude.
\( \mathrm{AM}=2 x^{2} \) and \( \mathrm{CM}=8 x^{2} \)
To do:
We have to find \( \mathrm{BM} \), AB and \( \mathrm{BC} \).
Solution:
In $\triangle ABC$,
By Pythagoras theorem,
$AC^2 =AB^2+BC^2$
$(2x^2+8x^2)^2=AB^2+BC^2$
$(2x^2)^2+(8x^2)^2+2\times2x^2\times8x^2=AB^2+BC^2$
$(2x^2)^2+(8x^2)^2+32x^4=AB^2+BC^2$.........(i)
Similarly,
In $\triangle ABM$,
By Pythagoras theorem,
$AB^2 =AM^2+BM^2$
$AB^2=(2x^2)^2+BM^2$......(ii)
In $\triangle BMC$,
By Pythagoras theorem,
$BC^2 =MC^2+BM^2$
$BC^2=(8x^2)^2+BM^2$......(iii)
From (i), (ii) and (iii),
$(2x^2)^2+(8x^2)^2+32x^4=(2x^2)^2+BM^2+(8x^2)^2+BM^2$
$32x^4=2BM^2$
$16x^4=BM^2$
$BM^2=(4x^2)^2$
$BM=4x^2$
Therefore,
$AB^2=(2x^2)^2+16x^4$
$=4x^4+16x^4$
$=20x^4$
$\Rightarrow AB=\sqrt{20x^4}$
$=2\sqrt5x^2$
$BC^2=(8x^2)^2+16x^4$
$=64x^4+16x^4$
$=80x^4$
$\Rightarrow BC=\sqrt{80x^4}$
$=4\sqrt5x^2$
Related Articles In \( \triangle \mathrm{ABC}, \angle \mathrm{B}=90^{\circ} \) and \( \mathrm{BM} \) is an altitude. If \( \mathrm{AM}=x+7, \mathrm{BM}=x+2 \) and \( \mathrm{CM}=x \), findthe value of \( x \).
In \( \triangle \mathrm{ABC}, \angle \mathrm{B}=90^{\circ} \) and \( \mathrm{BM} \) is an altitude. If \( \mathrm{AB}=2 \sqrt{10} \) and \( \mathrm{AM}=5 \), find \( \mathrm{CM} \).
In \( \triangle \mathrm{ABC}, \angle \mathrm{B}=90^{\circ} \) and \( \mathrm{BM} \) is an altitude. If \( \mathrm{AM}=\mathrm{BM}=12 \), find \( \mathrm{AC} \).
In \( \triangle \mathrm{ABC}, \angle \mathrm{A}=90^{\circ} \) and \( \mathrm{AM} \) is an altitude. If \( \mathrm{BM}=6 \) and \( \mathrm{CM}=2 \), find the perimeter of \( \triangle \mathrm{ABC} \).
In \( \triangle \mathrm{ABC}, \angle \mathrm{B}=90^{\circ} \) and \( \mathrm{BM} \) is an altitude. If \( \mathrm{BM}=\sqrt{30} \) and \( \mathrm{CM}=3 \), find \( \mathrm{AC} \).
In \( \triangle \mathrm{ABC}, \angle \mathrm{B}=90^{\circ} \) and \( \mathrm{BM} \) is a median. If \( \mathrm{AB}=15 \) and \( \mathrm{BC}=20 \), find \( \mathrm{BM} \).
In \( \triangle \mathrm{ABC}, \angle \mathrm{B}=90^{\circ} \) and \( \mathrm{BM} \) is an altitude. If \( \mathrm{BM}=10 \) and \( \mathrm{CM}=5 \), find the perimeter of \( \triangle \mathrm{ABC} \).
In \( \triangle \mathrm{ABC}, \angle \mathrm{A}=\angle \mathrm{B}+\angle \mathrm{C} \) and \( \mathrm{AM} \) is an altitude. If \( \mathrm{AM}=\sqrt{12} \) and \( \mathrm{BC}=8 \), find BM.
In \( \triangle \mathrm{ABC}, \mathrm{M} \) and \( \mathrm{N} \) are points of \( \mathrm{AB} \) and \( \mathrm{AC} \) respectively and \( \mathrm{MN} \| \mathrm{BC} \). If \( \mathrm{AM}=x \), \( \mathrm{MB}=x-2, \mathrm{AN}=x+2 \) and \( \mathrm{NC}=x-1 \), find the value of \( x \).
In \( \triangle \mathrm{ABC}, \angle \mathrm{B}=90^{\circ} \) and \( \mathrm{BM} \) is an altitude. If \( A M=9 \) and \( C M=16 \), find the perimeter of \( \triangle \mathrm{ABC} \).
In \( \triangle \mathrm{ABC}, \angle \mathrm{B}=90^{\circ} \). If \( \mathrm{AC}-\mathrm{BC}=4 \) and \( \mathrm{BC}-\mathrm{AB}=4 \), find all the three sides of \( \triangle \mathrm{ABC} \).
In \( \triangle \mathrm{ABC}, \angle \mathrm{C}=90^{\circ}, \mathrm{AB}=12.5 \) and \( \mathrm{BC}=12 \). Find \( \mathrm{AC} \).
Construct a triangle \( \mathrm{ABC} \) in which \( \mathrm{BC}=8 \mathrm{~cm}, \angle \mathrm{B}=45^{\circ} \) and \( \mathrm{AB}-\mathrm{AC}=3.5 \mathrm{~cm} \).
Construct a triangle \( \mathrm{ABC} \) in which \( \mathrm{BC}=7 \mathrm{~cm}, \angle \mathrm{B}=75^{\circ} \) and \( \mathrm{AB}+\mathrm{AC}=13 \mathrm{~cm} \).
\( \mathrm{ABC} \) is a right angled triangle in which \( \angle \mathrm{A}=90^{\circ} \) and \( \mathrm{AB}=\mathrm{AC} \). Find \( \angle \mathrm{B} \) and \( \angle \mathrm{C} \).
Kickstart Your Career
Get certified by completing the course
Get Started