In $ \triangle \mathrm{ABC}, \angle \mathrm{A}=90^{\circ} $ and $ \mathrm{AM} $ is an altitude. If $ \mathrm{BM}=6 $ and $ \mathrm{CM}=2 $, find the perimeter of $ \triangle \mathrm{ABC} $.
Given:
In \( \triangle \mathrm{ABC}, \angle \mathrm{A}=90^{\circ} \) and \( \mathrm{AM} \) is an altitude. If \( \mathrm{BM}=6 \) and \( \mathrm{CM}=2 \).
To do:
We have to find the perimeter of \( \triangle \mathrm{ABC} \).
Solution:
In $\triangle ABC$,
By Pythagoras theorem,
$BC^2 =AB^2+AC^2$
$(2+6)^2=AB^2+AC^2$
$(8)^2=AB^2+AC^2$
$64=AB^2+AC^2$.........(i)
Similarly,
In $\triangle ABM$,
By Pythagoras theorem,
$AB^2 =AM^2+BM^2$
$AB^2=AM^2+6^2$......(ii)
In $\triangle AMC$,
By Pythagoras theorem,
$AC^2 =MC^2+AM^2$
$AC^2=(2)^2+AM^2$......(iii)
From (i), (ii) and (iii),
$64=36+AM^2+4+AM^2$
$64-40=2AM^2$
$24=2AM^2$
$AM^2=12$
$AM=\sqrt{12}=2\sqrt{3}$
Therefore,
$AB^2=12+36$
$=48$
$\Rightarrow AB=\sqrt{48}$
$=4\sqrt{3}$
$AC^2=4+12$
$=16$
$\Rightarrow AC=\sqrt{16}$
$=4$
Therefore,
Perimeter of triangle ABC $=AB+BC+AC$
$=4\sqrt3+8+4$
$=12+4\sqrt{3}$
Related Articles In \( \triangle \mathrm{ABC}, \angle \mathrm{B}=90^{\circ} \) and \( \mathrm{BM} \) is an altitude. If \( \mathrm{BM}=10 \) and \( \mathrm{CM}=5 \), find the perimeter of \( \triangle \mathrm{ABC} \).
In \( \triangle \mathrm{ABC}, \angle \mathrm{B}=90^{\circ} \) and \( \mathrm{BM} \) is an altitude. If \( \mathrm{AM}=\mathrm{BM}=12 \), find \( \mathrm{AC} \).
In \( \triangle \mathrm{ABC}, \angle \mathrm{B}=90^{\circ} \) and \( \mathrm{BM} \) is an altitude. If \( \mathrm{AB}=2 \sqrt{10} \) and \( \mathrm{AM}=5 \), find \( \mathrm{CM} \).
In \( \triangle \mathrm{ABC}, \angle \mathrm{B}=90^{\circ} \) and \( \mathrm{BM} \) is an altitude. If \( \mathrm{AM}=2 x^{2} \) and \( \mathrm{CM}=8 x^{2} \), find \( \mathrm{BM} \), AB and \( \mathrm{BC} \).
In \( \triangle \mathrm{ABC}, \angle \mathrm{B}=90^{\circ} \) and \( \mathrm{BM} \) is an altitude. If \( \mathrm{BM}=\sqrt{30} \) and \( \mathrm{CM}=3 \), find \( \mathrm{AC} \).
In \( \triangle \mathrm{ABC}, \angle \mathrm{B}=90^{\circ} \) and \( \mathrm{BM} \) is an altitude. If \( \mathrm{AM}=x+7, \mathrm{BM}=x+2 \) and \( \mathrm{CM}=x \), findthe value of \( x \).
In \( \triangle \mathrm{ABC}, \angle \mathrm{B}=90^{\circ} \) and \( \mathrm{BM} \) is an altitude. If \( A M=9 \) and \( C M=16 \), find the perimeter of \( \triangle \mathrm{ABC} \).
In \( \triangle \mathrm{ABC}, \angle \mathrm{A}=\angle \mathrm{B}+\angle \mathrm{C} \) and \( \mathrm{AM} \) is an altitude. If \( \mathrm{AM}=\sqrt{12} \) and \( \mathrm{BC}=8 \), find BM.
In \( \triangle \mathrm{ABC}, \angle \mathrm{B}=90^{\circ} \) and \( \mathrm{BM} \) is a median. If \( \mathrm{AB}=15 \) and \( \mathrm{BC}=20 \), find \( \mathrm{BM} \).
In \( \triangle \mathrm{ABC}, \mathrm{AB}=\mathrm{AC} \) and \( \mathrm{AM} \) is an altitude. If \( A M=15 \) and the perimeter of \( \triangle A B C \) is 50 , find the area of \( \triangle \mathrm{ABC} \).
In \( \triangle \mathrm{ABC}, \mathrm{AD} \) is a median. If \( \mathrm{AB}=18 \mathrm{~cm} \). \( \mathrm{AC}=14 \mathrm{~cm} \) and \( \mathrm{AD}=14 \mathrm{~cm} \), find the perimeter of \( \triangle \mathrm{ABC} \).
In \( \triangle \mathrm{ABC}, \angle \mathrm{B}=90^{\circ} \). If \( \mathrm{AC}-\mathrm{BC}=4 \) and \( \mathrm{BC}-\mathrm{AB}=4 \), find all the three sides of \( \triangle \mathrm{ABC} \).
\( \Delta \mathrm{ABC} \sim \Delta \mathrm{XZY} \). If the perimeter of \( \triangle \mathrm{ABC} \) is \( 45 \mathrm{~cm} \), the perimeter of \( \triangle \mathrm{XYZ} \) is \( 30 \mathrm{~cm} \) and \( \mathrm{AB}=21 \mathrm{~cm} \), find \( \mathrm{XY} \).
In \( \triangle \mathrm{ABC}, \angle \mathrm{C}=90^{\circ}, \mathrm{AB}=12.5 \) and \( \mathrm{BC}=12 \). Find \( \mathrm{AC} \).
\( \triangle \mathrm{ABC} \sim \triangle \mathrm{ZYX} . \) If \( \mathrm{AB}=3 \mathrm{~cm}, \quad \mathrm{BC}=5 \mathrm{~cm} \), \( \mathrm{CA}=6 \mathrm{~cm} \) and \( \mathrm{XY}=6 \mathrm{~cm} \), find the perimeter of \( \Delta \mathrm{XYZ} \).
Kickstart Your Career
Get certified by completing the course
Get Started