In $ \triangle \mathrm{ABC}, \angle \mathrm{A}=\angle \mathrm{B}+\angle \mathrm{C} $ and $ \mathrm{AM} $ is an altitude. If $ \mathrm{AM}=\sqrt{12} $ and $ \mathrm{BC}=8 $, find BM.
Given:
In \( \triangle \mathrm{ABC}, \angle \mathrm{A}=\angle \mathrm{B}+\angle \mathrm{C} \) and \( \mathrm{AM} \) is an altitude.
\( \mathrm{AM}=\sqrt{12} \) and \( \mathrm{BC}=8 \).
To do:
We have to find BM.
Solution:
$\angle A+\angle B+\angle C=180^o$
$\angle A+\angle A=180^o$
$\angle A=90^o$
Let $BM=x$, this implies, $CM=8-x$
In $\triangle ABC$,
By Pythagoras theorem,
$BC^2 =AB^2+AC^2$
$(8)^2=AB^2+AC^2$
$64=AB^2+AC^2$.........(i)
Similarly,
In $\triangle ABM$,
By Pythagoras theorem,
$AB^2 =AM^2+BM^2$
$AB^2=(\sqrt{12})^2+x^2$
$AB^2=12+x^2$......(ii)
In $\triangle AMC$,
By Pythagoras theorem,
$AC^2 =MC^2+AM^2$
$AC^2=(8-x)^2+(\sqrt{12})^2$
$AC^2=64+x^2-16x+12$......(iii)
From (i), (ii) and (iii),
$64=12+x^2+76+x^2-16x$
$2x^2+24-16x=0$
$x^2-8x+12=0$
$(x-6)(x-2)=0$
$x=6$ or $x=2$
Therefore,
$BM=2$ or $BM=6$
Related Articles In \( \triangle \mathrm{ABC}, \angle \mathrm{B}=90^{\circ} \) and \( \mathrm{BM} \) is an altitude. If \( \mathrm{AM}=\mathrm{BM}=12 \), find \( \mathrm{AC} \).
In \( \triangle \mathrm{ABC}, \angle \mathrm{B}=90^{\circ} \) and \( \mathrm{BM} \) is an altitude. If \( \mathrm{AM}=2 x^{2} \) and \( \mathrm{CM}=8 x^{2} \), find \( \mathrm{BM} \), AB and \( \mathrm{BC} \).
In \( \triangle \mathrm{ABC}, \angle \mathrm{B}=90^{\circ} \) and \( \mathrm{BM} \) is an altitude. If \( \mathrm{AB}=2 \sqrt{10} \) and \( \mathrm{AM}=5 \), find \( \mathrm{CM} \).
In \( \triangle \mathrm{ABC}, \angle \mathrm{A}=90^{\circ} \) and \( \mathrm{AM} \) is an altitude. If \( \mathrm{BM}=6 \) and \( \mathrm{CM}=2 \), find the perimeter of \( \triangle \mathrm{ABC} \).
In \( \triangle \mathrm{ABC}, \angle \mathrm{B}=90^{\circ} \) and \( \mathrm{BM} \) is an altitude. If \( \mathrm{BM}=\sqrt{30} \) and \( \mathrm{CM}=3 \), find \( \mathrm{AC} \).
In \( \triangle \mathrm{ABC}, \angle \mathrm{B}=90^{\circ} \) and \( \mathrm{BM} \) is an altitude. If \( \mathrm{AM}=x+7, \mathrm{BM}=x+2 \) and \( \mathrm{CM}=x \), findthe value of \( x \).
In \( \triangle \mathrm{ABC}, \angle \mathrm{B}=90^{\circ} \) and \( \mathrm{BM} \) is an altitude. If \( \mathrm{BM}=10 \) and \( \mathrm{CM}=5 \), find the perimeter of \( \triangle \mathrm{ABC} \).
In \( \triangle \mathrm{ABC}, \angle \mathrm{B}=90^{\circ} \) and \( \mathrm{BM} \) is a median. If \( \mathrm{AB}=15 \) and \( \mathrm{BC}=20 \), find \( \mathrm{BM} \).
In \( \triangle \mathrm{ABC}, \angle \mathrm{C}=90^{\circ}, \mathrm{AB}=12.5 \) and \( \mathrm{BC}=12 \). Find \( \mathrm{AC} \).
\( \triangle \mathrm{ABC} \sim \triangle \mathrm{QPR} . \) If \( \angle \mathrm{A}+\angle \mathrm{B}=130^{\circ} \) and \( \angle B+\angle C=125^{\circ} \), find \( \angle Q \).
\( \mathrm{ABC} \) is a right angled triangle in which \( \angle \mathrm{A}=90^{\circ} \) and \( \mathrm{AB}=\mathrm{AC} \). Find \( \angle \mathrm{B} \) and \( \angle \mathrm{C} \).
In \( \triangle \mathrm{XYZ}, \angle \mathrm{Y}=90^{\circ} \) and \( \mathrm{YM} \) is an altitude. If \( \mathrm{XM}=\sqrt{12} \) and \( \mathrm{ZM}=\sqrt{3} \), find \( \mathrm{YM} \).
\( \mathrm{ABC} \) is an isosceles triangle with \( \mathrm{AB}=\mathrm{AC} \). Draw \( \mathrm{AP} \perp \mathrm{BC} \) to show that \( \angle \mathrm{B}=\angle \mathrm{C} \).
\( \triangle \mathrm{ABC} \sim \triangle \mathrm{PQR} \). If \( 2 \angle \mathrm{P}=3 \angle \mathrm{Q} \) and \( \angle C=100^{\circ} \), find \( \angle B \).
In \( \triangle \mathrm{ABC}, \angle \mathrm{B}=90^{\circ} \) and \( \mathrm{BM} \) is an altitude. If \( A M=9 \) and \( C M=16 \), find the perimeter of \( \triangle \mathrm{ABC} \).
Kickstart Your Career
Get certified by completing the course
Get Started