In $ \Delta \mathrm{XYZ}, \quad \angle \mathrm{Y}=90^{\circ} $. If $ \mathrm{XY}=a^{2}-\mathrm{b}^{2} $ and $ \mathrm{YZ}=2 a b $, find $ \mathrm{XZ} .(a>b>0) $.
Given:
In \( \Delta \mathrm{XYZ}, \quad \angle \mathrm{Y}=90^{\circ} \).
\( \mathrm{XY}=a^{2}-\mathrm{b}^{2} \) and \( \mathrm{YZ}=2 a b \).
To do:
We have to find XZ.
Solution:
In triangle XYZ, by Pythagoras theorem,
$XZ^2=XY^2+YZ^2$
$=(a^2-b^2)^2+(2ab)^2$
$=a^4+b^4-2a^2b^2+4a^2b^2$
$=a^4+b^4+2a^2b^2$
$=(a^2+b^2)^2$
$XZ=a^2+b^2$
Therefore, $XZ=a^2+b^2$.
Related Articles Construct a triangle \( \mathrm{XYZ} \) in which \( \angle \mathrm{Y}=30^{\circ}, \angle \mathrm{Z}=90^{\circ} \) and \( \mathrm{XY}+\mathrm{YZ}+\mathrm{ZX}=11 \mathrm{~cm} \).
\( \mathrm{XYZW} \) is a rectangle. If \( \mathrm{XY}+\mathrm{YZ}=17 \) and \( \mathrm{XZ}+\mathrm{YW}=26 \), find \( \mathrm{XY} \) and \( \mathrm{YZ} .(\mathrm{XY}>\mathrm{YZ}) \).
In \( \triangle \mathrm{ABC}, \angle \mathrm{B}=90^{\circ} \) and \( \mathrm{BM} \) is an altitude. If \( \mathrm{AM}=2 x^{2} \) and \( \mathrm{CM}=8 x^{2} \), find \( \mathrm{BM} \), AB and \( \mathrm{BC} \).
\( \angle \mathrm{A} \) and \( \angle \mathrm{B} \) are supplementary angles. \( \angle \mathrm{A} \) is thrice \( \angle \mathrm{B} \). Find the measures of \( \angle \mathrm{A} \) and \( \angle \mathrm{B} \)\( \angle \mathrm{A}=\ldots \ldots, \quad \angle \mathrm{B}=\ldots \ldots \)
\( \mathrm{X}, \mathrm{Y} \) and \( \mathrm{Z} \) are the midpoints of the sides of \( \Delta \mathrm{PQR} . \mathrm{A}, \mathrm{B} \) and \( \mathrm{C} \) are the midpoints of the sides of \( \triangle \mathrm{XYZ} \). If \( \mathrm{PQR}=240 \mathrm{~cm}^{2} \), find \( \mathrm{XYZ} \) and \( \mathrm{ABC} \).
In a parallelogram \( \mathrm{ABCD}, \angle \mathrm{A}: \angle \mathrm{B}=2: 3, \) then find angle \( \mathrm{D} \).
In \( \triangle \mathrm{ABC}, \angle \mathrm{B}=90^{\circ} \) and \( \mathrm{BM} \) is an altitude. If \( \mathrm{AB}=2 \sqrt{10} \) and \( \mathrm{AM}=5 \), find \( \mathrm{CM} \).
Bisectors of angles \( \mathrm{A}, \mathrm{B} \) and \( \mathrm{C} \) of a triangle \( \mathrm{ABC} \) intersect its circumcircle at \( \mathrm{D}, \mathrm{E} \) and Frespectively. Prove that the angles of the triangle \( \mathrm{DEF} \) are \( 90^{\circ}-\frac{1}{2} \mathrm{~A}, 90^{\circ}-\frac{1}{2} \mathrm{~B} \) and \( 90^{\circ}-\frac{1}{2} \mathrm{C} \).
In Fig. 6.14, lines \( \mathrm{XY} \) and \( \mathrm{MN} \) intersect at \( O \). If \( \angle \mathrm{POY}=90^{\circ} \) and \( a: b=2: 3 \), find \( c \)."\n
\( \mathrm{ABC} \) is a right angled triangle in which \( \angle \mathrm{A}=90^{\circ} \) and \( \mathrm{AB}=\mathrm{AC} \). Find \( \angle \mathrm{B} \) and \( \angle \mathrm{C} \).
In a quadrilateral \( \mathrm{ABCD}, \angle \mathrm{A}+\angle \mathrm{D}=90^{\circ} \). Prove that \( \mathrm{AC}^{2}+\mathrm{BD}^{2}=\mathrm{AD}^{2}+\mathrm{BC}^{2} \) [Hint: Produce \( \mathrm{AB} \) and DC to meet at E]
Name the types of following triangles:(a) Triangle with lengths of sides \( 7 \mathrm{~cm}, 8 \mathrm{~cm} \) and \( 9 \mathrm{~cm} \).(b) \( \triangle \mathrm{ABC} \) with \( \mathrm{AB}=8.7 \mathrm{~cm}, \mathrm{AC}=7 \mathrm{~cm} \) and \( \mathrm{BC}=6 \mathrm{~cm} \).(c) \( \triangle \mathrm{PQR} \) such that \( \mathrm{PQ}=\mathrm{QR}=\mathrm{PR}=5 \mathrm{~cm} \).(d) \( \triangle \mathrm{DEF} \) with \( \mathrm{m} \angle \mathrm{D}=90^{\circ} \)(e) \( \triangle \mathrm{XYZ} \) with \( \mathrm{m} \angle \mathrm{Y}=90^{\circ} \) and \( \mathrm{XY}=\mathrm{YZ} \).(f) \( \Delta \mathrm{LMN} \) with \( \mathrm{m} \angle \mathrm{L}=30^{\circ}, \mathrm{m} \angle \mathrm{M}=70^{\circ} \) and \( \mathrm{m} \angle \mathrm{N}=80^{\circ} \).
In \( \triangle \mathrm{ABC}, \angle \mathrm{B}=90^{\circ} \) and \( \mathrm{BM} \) is a median. If \( \mathrm{AB}=15 \) and \( \mathrm{BC}=20 \), find \( \mathrm{BM} \).
In \( \triangle \mathrm{ABC}, \angle \mathrm{B}=90^{\circ} \) and \( \mathrm{BM} \) is an altitude. If \( \mathrm{AM}=\mathrm{BM}=12 \), find \( \mathrm{AC} \).
Identify the like termsa) \( -a b^{2},-4 b a^{2}, 8 a^{2}, 2 a b^{2}, 7 b,-11 a^{2},-200 a,-11 a b, 30 a^{2} \)\( \mathrm{b},-6 \mathrm{a}^{2}, \mathrm{b}, 2 \mathrm{ab}, 3 \mathrm{a} \)
Kickstart Your Career
Get certified by completing the course
Get Started