In $ \triangle \mathrm{ABC}, \angle \mathrm{B}=90^{\circ} $ and $ \mathrm{BM} $ is an altitude. If $ \mathrm{AM}=x+7, \mathrm{BM}=x+2 $ and $ \mathrm{CM}=x $, find the value of $ x $.
Given:
In \( \triangle \mathrm{ABC}, \angle \mathrm{B}=90^{\circ} \) and \( \mathrm{BM} \) is an altitude.
\( \mathrm{AM}=x+7, \mathrm{BM}=x+2 \) and \( \mathrm{CM}=x \)
To do:
We have to find the value of \( x \).
Solution:
We know that,
In a right-angled triangle, the altitude on the hypotenuse is equal to the geometric mean of line segments formed by altitude on the hypotenuse.
$BM^2=AM \times CM$
Let $CM=x$
This implies,
$(x+2)^2=(x+7) \times (x)$
$x^2+4+2\times x \times 2=x^2+7x$
$x^2+4+4x=x^2+7x$
$7x-4x=4$
$3x=4$
$x=\frac{4}{3}$
Hence, the value of $x$ is \( \frac{4}{3} \).
Related Articles In \( \triangle \mathrm{ABC}, \angle \mathrm{B}=90^{\circ} \) and \( \mathrm{BM} \) is an altitude. If \( \mathrm{AM}=2 x^{2} \) and \( \mathrm{CM}=8 x^{2} \), find \( \mathrm{BM} \), AB and \( \mathrm{BC} \).
In \( \triangle \mathrm{ABC}, \angle \mathrm{B}=90^{\circ} \) and \( \mathrm{BM} \) is an altitude. If \( \mathrm{AM}=\mathrm{BM}=12 \), find \( \mathrm{AC} \).
In \( \triangle \mathrm{ABC}, \angle \mathrm{B}=90^{\circ} \) and \( \mathrm{BM} \) is an altitude. If \( \mathrm{BM}=\sqrt{30} \) and \( \mathrm{CM}=3 \), find \( \mathrm{AC} \).
In \( \triangle \mathrm{ABC}, \angle \mathrm{B}=90^{\circ} \) and \( \mathrm{BM} \) is an altitude. If \( \mathrm{BM}=10 \) and \( \mathrm{CM}=5 \), find the perimeter of \( \triangle \mathrm{ABC} \).
In \( \triangle \mathrm{ABC}, \angle \mathrm{B}=90^{\circ} \) and \( \mathrm{BM} \) is an altitude. If \( \mathrm{AB}=2 \sqrt{10} \) and \( \mathrm{AM}=5 \), find \( \mathrm{CM} \).
In \( \triangle \mathrm{ABC}, \angle \mathrm{A}=90^{\circ} \) and \( \mathrm{AM} \) is an altitude. If \( \mathrm{BM}=6 \) and \( \mathrm{CM}=2 \), find the perimeter of \( \triangle \mathrm{ABC} \).
In \( \triangle \mathrm{ABC}, \angle \mathrm{B}=90^{\circ} \) and \( \mathrm{BM} \) is a median. If \( \mathrm{AB}=15 \) and \( \mathrm{BC}=20 \), find \( \mathrm{BM} \).
In \( \triangle \mathrm{ABC}, \angle \mathrm{A}=\angle \mathrm{B}+\angle \mathrm{C} \) and \( \mathrm{AM} \) is an altitude. If \( \mathrm{AM}=\sqrt{12} \) and \( \mathrm{BC}=8 \), find BM.
In \( \triangle \mathrm{ABC}, \mathrm{M} \) and \( \mathrm{N} \) are points of \( \mathrm{AB} \) and \( \mathrm{AC} \) respectively and \( \mathrm{MN} \| \mathrm{BC} \). If \( \mathrm{AM}=x \), \( \mathrm{MB}=x-2, \mathrm{AN}=x+2 \) and \( \mathrm{NC}=x-1 \), find the value of \( x \).
In \( \triangle \mathrm{ABC}, \angle \mathrm{B}=90^{\circ} \) and \( \mathrm{BM} \) is an altitude. If \( A M=9 \) and \( C M=16 \), find the perimeter of \( \triangle \mathrm{ABC} \).
Construct a triangle \( \mathrm{ABC} \) in which \( \mathrm{BC}=7 \mathrm{~cm}, \angle \mathrm{B}=75^{\circ} \) and \( \mathrm{AB}+\mathrm{AC}=13 \mathrm{~cm} \).
Name the types of following triangles:(a) Triangle with lengths of sides \( 7 \mathrm{~cm}, 8 \mathrm{~cm} \) and \( 9 \mathrm{~cm} \).(b) \( \triangle \mathrm{ABC} \) with \( \mathrm{AB}=8.7 \mathrm{~cm}, \mathrm{AC}=7 \mathrm{~cm} \) and \( \mathrm{BC}=6 \mathrm{~cm} \).(c) \( \triangle \mathrm{PQR} \) such that \( \mathrm{PQ}=\mathrm{QR}=\mathrm{PR}=5 \mathrm{~cm} \).(d) \( \triangle \mathrm{DEF} \) with \( \mathrm{m} \angle \mathrm{D}=90^{\circ} \)(e) \( \triangle \mathrm{XYZ} \) with \( \mathrm{m} \angle \mathrm{Y}=90^{\circ} \) and \( \mathrm{XY}=\mathrm{YZ} \).(f) \( \Delta \mathrm{LMN} \) with \( \mathrm{m} \angle \mathrm{L}=30^{\circ}, \mathrm{m} \angle \mathrm{M}=70^{\circ} \) and \( \mathrm{m} \angle \mathrm{N}=80^{\circ} \).
In \( \Delta \mathrm{XYZ}, \mathrm{S} \) and \( \mathrm{T} \) are points of \( \mathrm{XY} \) and \( \mathrm{XZ} \) respectively and ST \( \| \mathrm{YZ} \). If \( \mathrm{XS}=4 \mathrm{~cm} \), \( \mathrm{XT}=8 \mathrm{~cm}, \mathrm{SY}=x-4 \mathrm{~cm} \) and \( \mathrm{TZ}=3 x-19 \mathrm{~cm} \) find the value of \( x \).
In \( \triangle \mathrm{ABC}, \angle \mathrm{B}=90^{\circ} \). If \( \mathrm{AC}-\mathrm{BC}=4 \) and \( \mathrm{BC}-\mathrm{AB}=4 \), find all the three sides of \( \triangle \mathrm{ABC} \).
\( \mathrm{ABC} \) is a right angled triangle in which \( \angle \mathrm{A}=90^{\circ} \) and \( \mathrm{AB}=\mathrm{AC} \). Find \( \angle \mathrm{B} \) and \( \angle \mathrm{C} \).
Kickstart Your Career
Get certified by completing the course
Get Started