# In a quadrilateral $ABCD, CO$ and $DO$ are the bisectors of $\angle C$ and $\angle D$ respectively. Prove that $\angle COD = \frac{1}{2}(\angle A + \angle B)$.

Given:

In a quadrilateral $ABCD, CO$ and $DO$ are the bisectors of $\angle C$ and $\angle D$ respectively.

To do:

We have to prove that $\angle COD = \frac{1}{2}(\angle A + \angle B)$.

Solution:

In $\Delta C O D$,

$\angle \mathrm{DCO}+\angle \mathrm{CDO}+\angle \mathrm{COD}=180^{\circ}$           (Sum of the angles in a triangle is $180^o$)

This implies,

$\frac{1}{2} \angle C+\frac{1}{2} \angle D+\angle C O D=180^{\circ}$

$\angle C O D=180^{\circ}-(\frac{1}{2} \angle C+\frac{1}{2} \angle D)$

$\angle COD =180^{\circ}-\frac{1}{2}(\angle C+\angle D)$

In quadrilateral $ABCD$,

$\angle A+\angle B+\angle C+\angle D=360^{\circ}$

$\angle C+\angle D=360^{\circ}-(\angle A+\angle B)$

$\angle C O D=180^{\circ}-\frac{1}{2}[360^{\circ}-\angle A+\angle B]$

$\angle C O D =180^{\circ}-180^{\circ}+\frac{1}{2}(\angle A+\angle B)$

$\angle C O D =\frac{1}{2}(\angle A+\angle B)$

Hence proved.

Tutorialspoint

Simply Easy Learning

Updated on: 10-Oct-2022

63 Views