$ABCD$ is a parallelogram in which $\angle A = 70^o$. Compute $\angle B, \angle C$ and $\angle D$.


Given:

$ABCD$ is a parallelogram in which $\angle A = 70^o$.

To do:

We have to compute $\angle B, \angle C$ and $\angle D$.

Solution:

We know that,

The opposite angles of a parallelogram are equal.

Adjacent angles of a parallelogram are supplementary

Therefore,

$\angle A+\angle B=180^o$

$70^o+\angle B=180^o$

$\angle B=180^o-70^o$

$\angle B=110^o$

$\angle C=\angle A=70^o$                (Opposite angles)

$\angle D=\angle B=110^o$                (Opposite angles)

Hence, $\angle B=110^o, \angle C=70^o$ and $\angle D=110^o$.

Tutorialspoint
Tutorialspoint

Simply Easy Learning

Updated on: 10-Oct-2022

44 Views

Kickstart Your Career

Get certified by completing the course

Get Started
Advertisements