- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
ABCD is a cyclic quadrilateral such that $\angle A = (4y + 20)^o, \angle B = (3y – 5)^o, \angle C = (4x)^o$ and $\angle D = (7x + 5)^o$. Find the four angles.
Given:
ABCD is a cyclic quadrilateral such that $\angle A = (4y + 20)^o, \angle B = (3y – 5)^o, \angle C = (4x)^o$ and $\angle D = (7x + 5)^o$.
To do:
We have to find the four angles.
Solution:
We know that,
Sum of the angles in a quadrilateral is $360^o$. 
Sum of the opposite angles in a cyclic quadrilateral is $180^o$.
Therefore,
$\angle A+\angle C=180^o$
$ (4y + 20)^o+(4x)^o=180^o$
$4y+4x=180^-20^o$
$4(x+y)=160^o$
$x+y=40^o$
$x=40^o-y$.....(i)
$\angle B+\angle D=180^o$
$(3y – 5)^o+ (7x + 5)^o=180^o$
$3y+7x=180^o$
$3y+7(40^o-y)=180^o$ (From (i))
$3y+280^o-7y=180^o$
$4y=280^o-180^o$
$4y=100^o$
$y=\frac{100^o}{4}$
$y=25^o$
$x=40^o-25^o$ (From (i))
$x=15^o$
This implies,
$\angle A = (4y + 20)^o$
$=4(25^o)+20^o$
$=100^o+20^o$
$=120^o$
$\angle B = (3y – 5)^o$
$=3(25^o)-5^o$
$=75^o-5^o$
$=70^o$
$\angle C = (4x)^o$
$=4(15^o)$
$=60^o$
$\angle D = (7x + 5)^o$
$=7(15^o)+5^o$
$=105^o+5^o$
$=110^o$
The four angles are $\angle A=120^o$, $\angle B=70^o$, $\angle C=60^o$ and $\angle D=110^o$.