In $(2\times n) -1$, if you substitute any whole number greater than 0 for n will you get an even or odd number ? Why ? What about $(2\times n) +1$
Given :
The given terms are $(2\times n) -1$ and $(2\times n) +1$.
To do :
We have to find for any whole number greater than 0, the value of the given terms will be odd or even.
Solution :
$(2\times n) -1$
For any $n>0$
If $n = 1$
$(2\times1)-1 = 2-1 = 1$
If $n=2$
$(2\times2)-1 = 4-1 = 3$
.
.
.
.
This implies,
For any $n>0, (2\times n)-1$ is an odd number.
$(2\times n) +1$
For any $n>0$
If $n = 1$
$(2\times1)+1 = 2+1 = 3$
If $n=2$
$(2\times2)+1 = 4+1 = 5$
.
.
.
.
This implies,
For any $n>0, (2\times n)+1$ is an odd number.
- Related Articles
- Evaluate: $\frac{a^{2 n+1} \times a^{(2 n+1)(2 n-1)}}{a^{n(4 n-1)}\times(a^{2})^{2 n+3}}$.
- Explain the following properties:i) ($-$a1) $\times$ ($-$a2) $\times$ ($-$a3) $\times$ ... $\times$ ($-$an) = $-$ (a1 $\times$ a2 $\times$ a3 $\times$ ... $\times$ an), when n is odd.ii) ($-$a1) $\times$ ($-$a2) $\times$ ($-$a3) $\times$ ... $\times$ ($-$an) = (a1 $\times$ a2 $\times$ a3 $\times$ ... $\times$ an), when n is even.iii) ($-$a) $\times$ ($-$a) $\times$ ($-$a) $\times$ ... n times = $-$ an, when n is odd. iv) (-$a) $\times$ ($-$a) $\times$ ($-$a) $\times$ ... n times = an, when n is even. v) ($-$1) $\times$ ($-$1) $\times$ ($-$1) $\times$ ... n times = $-$ 1, when n is odd.v) ($-$1) $\times$ ($-$1) $\times$ ($-$1) $\times$ ... n times = 1, when n is even.
- Simplify the following:\( \frac{5 \times 25^{n+1}-25 \times 5^{2 n}}{5 \times 5^{2 n+3}-(25)^{n+1}} \)
- Simplify the following:\( \frac{5^{n+3}-6 \times 5^{n+1}}{9 \times 5^{n}-2^{2} \times 5^{n}} \)
- $n^2 - 1$ is divisible by 8, if $n$ is(A) an integer(B) a natural number(C) an odd integer(D) an even integer
- By what number should 1 1/2 be divided to get 2/3?*"\n
- Simplify the following:\( \frac{3^n \times 9^{n+1}}{3^{n-1} \times 9^{n-1}} \)
- Largest even digit number not greater than N in C++
- Prove that:\( \frac{2^{n}+2^{n-1}}{2^{n+1}-2^{n}}=\frac{3}{2} \)
- If you subtract $\frac{1}{2}$ from a number and multiply the result by $\frac{1}{2}$, you get $\frac{1}{8}$. What is the number?
- If $n$ is an odd integer, then show that $n^2 - 1$ is divisible by $8$.
- Sum of Series (n^2-1^2) + 2(n^2-2^2) +….n(n^2-n^2)
- Find the value of $4m^2 n^2 \times 7m^3$ when $m= \frac{-1}{2}$ and $n= 4$.
- Finding Occurrence of a Number More Than N/2 Times in a Sorted Array in Java
- n-th number with digits in {0, 1, 2, 3, 4, 5} in C++
Kickstart Your Career
Get certified by completing the course
Get Started