- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Observe the following pattern
$ 1^{2}=\frac{1}{6}[1 \times(1+1) \times(2 \times 1)+1)] $
$ 1^{2}+2^{2}=\frac{1}{6}[2 \times(2+1) \times(2 \times 2)+1)] $
$ 1^{2}+2^{2}+3^{2}=\frac{1}{6}[3 \times(3+1) \times(2 \times 3)+1)] $
$ 1^{2}+2^{2}+3^{2}+4^{2}=\frac{1}{6}[4 \times(4+1) \times(2 \times 4)+1)] $
and find the values of each of the following:
(i) $1^2 + 2^2 + 3^2 + 4^2 +…………… + 10^2$
(ii)$5^2 + 6^2 + 7^2 + 8^2 + 9^2 + 10^2 + 11^2 + 12^2$
To do:
We have to find the values of the given series.
Solution:
We observe that,
\( 1^{2}=\frac{1}{6}[1 \times(1+1) \times(2 \times 1)+1)] \)
\( 1^{2}+2^{2}=\frac{1}{6}[2 \times(2+1) \times(2 \times 2)+1)] \)
\( 1^{2}+2^{2}+3^{2}=\frac{1}{6}[3 \times(3+1) \times(2 \times 3)+1)] \)
\( 1^{2}+2^{2}+3^{2}+4^{2}=\frac{1}{6}[4 \times(4+1) \times(2 \times 4)+1)] \)
Therefore,
(i) $1^{2}+2^{2}+3^{2}+4^{2}+\ldots .+10^{2}=\frac{1}{6}\{10 \times(10+1) \times(2 \times 10+1)]$
$=\frac{1}{6}[10 \times 11 \times 21]$
$=\frac{10 \times 11 \times 21}{6}$
$=\frac{2310}{6}$
$=385$
(ii) $5^{2}+6^{2}+7^{2}+8^{2}+9^{2}+10^{2}+11^{2}+12^{2}=[1^{2}+2^{2}+3^{2}+4^{2}+\ldots . .+12^{2}]-[1^{2}+2^{2}+3^{2}+4^{2}]$
$=\frac{1}{6}[12 \times(12+1) \times(2 \times 12+1)]-\frac{1}{6}[4 \times(4+1) \times(2 \times 4+1)]$
$=\frac{1}{6}[12 \times13 \times25]-\frac{1}{6}[4 \times5\times9]$
$=650-30$
$=620$
- Related Articles
- Observe the following pattern$1=\frac{1}{2}\{1 \times(1+1)\}$$1+2=\frac{1}{2}\{2 \times(2+1)\}$$1+2+3=\frac{1}{2}\{3 \times(3+1)\}$$1+2+3+4=\frac{1}{2}\{4 \times(4+1)\}$and find the values of each of the following:(i) $1 + 2 + 3 + 4 + 5 +….. + 50$(ii)$31 + 32 +… + 50$
- Observe the following pattern\( (1 \times 2)+(2 \times 3)=\frac{2 \times 3 \times 4}{3} \)\( (1 \times 2)+(2 \times 3)+(3 \times 4)=\frac{3 \times 4 \times 5}{3} \)\( (1 \times 2)+(2 \times 3)+(3 \times 4)+(4 \times 5)=\frac{4 \times 5 \times 6}{3} \)and find the value of\( (1 \times 2)+(2 \times 3)+(3 \times 4)+(4 \times 5)+(5 \times 6) \)
- Simplify:(i) \( \left\{\left(\frac{1}{3}\right)^{-3}-\left(\frac{1}{2}\right)^{-3}\right\} \div\left(\frac{1}{4}\right)^{-3} \)(ii) \( \left(3^{2}-2^{2}\right) \times\left(\frac{2}{3}\right)^{-3} \)(iii) \( \left\{\left(\frac{1}{2}\right)^{-1} \times(-4)^{-1}\right\}^{-1} \)(iv) \( \left[\left\{\left(\frac{-1}{4}\right)^{2}\right\}^{-2}\right]^{-1} \)(v) \( \left\{\left(\frac{2}{3}\right)^{2}\right\}^{3} \times\left(\frac{1}{3}\right)^{-4} \times 3^{-1} \times 6^{-1} \)
- Mention the property used in the following expression:$(-2) \times[3 \times(\frac{1}{2})]]=[[(-2) \times 3] \times(\frac{1}{2})$.
- Evaluate: $\frac{a^{2 n+1} \times a^{(2 n+1)(2 n-1)}}{a^{n(4 n-1)}\times(a^{2})^{2 n+3}}$.
- Find x: \( 4^{x-2}+2 \times 2^{2 x-1}=1 \frac{1}{16} \)
- Simplify: $2^{\frac{2}{3}}\times 2^{\frac{1}{3}}$.
- Find the values of each of the following:(i) \( \left(\frac{1}{2}\right)^{-1}+\left(\frac{1}{3}\right)^{-1}+\left(\frac{1}{4}\right)^{-1} \)(ii) \( \left(\frac{1}{2}\right)^{-2}+\left(\frac{1}{3}\right)^{-2}+\left(\frac{1}{4}\right)^{-2} \)(iii) \( \left(2^{-1} \times 4^{-1}\right) \div 2^{-2} \)(iv) \( \left(5^{-1} \times 2^{-1}\right) \div 6^{-1} \)
- Simplify: $\frac{2}{5} \times\left(-\frac{3}{7}\right)-\frac{1}{6} \times \frac{3}{2}+\frac{1}{14} \times \frac{2}{5}$.
- Simplify:\( 5 \frac{1}{4} \p 2 \frac{1}{3}-4 \frac{2}{3} \p 5 \frac{1}{3} \times 3 \frac{1}{2} \)
- Using appropriate properties find.(i) \( -\frac{2}{3} \times \frac{3}{5}+\frac{5}{2}-\frac{3}{5} \times \frac{1}{6} \)(ii) \( \frac{2}{5} \times\left(-\frac{3}{7}\right)-\frac{1}{6} \times \frac{3}{2}+\frac{1}{14} \times \frac{2}{5} \).
- Write each of the following in exponential form:(i) \( \left(\frac{3}{2}\right)^{-1} \times\left(\frac{3}{2}\right)^{-1} \times\left(\frac{3}{2}\right)^{-1} \times\left(\frac{3}{2}\right)^{-1} \)(ii) \( \left(\frac{2}{5}\right)^{-2} \times\left(\frac{2}{5}\right)^{-2} \times\left(\frac{2}{5}\right)^{-2} \)
- Prove that:\( \frac{3^{-3} \times 6^{2} \times \sqrt{98}}{5^{2} \times \sqrt[3]{1 / 25} \times(15)^{-4 / 3} \times 3^{1 / 3}}=28 \sqrt{2} \)
- Solve:$3\frac{2}{7} \ \div \ 4\frac{3}{5} \ \times \ 1\frac{1}{2}$
- Simplify:\( \frac{1}{6^{-2}}\left[\left(\frac{2}{3}\right)^{2}\right]^{-1} \times\left(\frac{4}{9}\right) \times 7^{0} \)
