- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Prove that:$ \frac{2^{n}+2^{n-1}}{2^{n+1}-2^{n}}=\frac{3}{2} $
Given:
\( \frac{2^{n}+2^{n-1}}{2^{n+1}-2^{n}}=\frac{3}{2} \)
To do:
We have to prove that \( \frac{2^{n}+2^{n-1}}{2^{n+1}-2^{n}}=\frac{3}{2} \).
Solution:
We know that,
$(a^{m})^{n}=a^{m n}$
$a^{m} \times a^{n}=a^{m+n}$
$a^{m} \div a^{n}=a^{m-n}$
$a^{0}=1$
Therefore,
LHS $=\frac{2^{n}+2^{n-1}}{2^{n+1}-2^{n}}$
$=\frac{2^{n}+2^{n} \times 2^{-1}}{2^{n} \times 2^{1}-2^{n}}$
$=\frac{2^{n}(1+2^{-1})}{2^{n}(2^{1}-1)}$
$=\frac{1+\frac{1}{2}}{2-1}$
$=\frac{\frac{3}{2}}{1}$
$=\frac{3}{2}$
$=$ RHS
Hence proved.
Advertisements