- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Verify: $ 1+2+3+\ldots+n=\frac{n(n+1)}{2} $, taking $ n=6 $ and $ 15 . $
Given :
\( 1+2+3+\ldots+n=\frac{n(n+1)}{2} \)
To do :
We have to verify the above equation by taking \( n=6 \) and \( 15 . \)
Solution :
Taking $n=6$,
LHS
$=1+2+3+4+5+6=21$
RHS
$=\frac{6(6+1)}{2}$
$=21$
LHS $=$ RHS
Taking $n=6$,
LHS
$=1+2+3+4+5+6+7+8+9+10+11+12+13+14+15=120$
RHS
$=\frac{15(15+1)}{2}$
$=\frac{15(16)}{2}$
$=120$
LHS $=$ RHS
Hence verified.
Advertisements