- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
If $x=\frac{2}{3}$ and $x=-3$ are the roots of the equation $ax^2+7x+b=0$, find the values of $a$ and $b$.
Given:
Given equation is $ax^2+7x+b=0$.
To do:
We have to find the values of $a$ and $b$ if $x=\frac{2}{3}$ and $x=-3$ are the roots of the given equation.
Solution:
If $x=m$ is a root of $f(x)$ then $f(m)=0$.
For $x=\frac{2}{3}$
$ax^2+7x+b=0$
$a(\frac{2}{3})^2+7(\frac{2}{3})+b=0$
$\frac{4}{9}a+\frac{14}{3}+b=0$
$9(\frac{4}{9}a)+9(\frac{14}{3})+9(b)=9(0)$ (Multply by $9$ on both sides)
$4a+42+9b=0$
Let it be equation (1).
For $x=-3$
$ax^2+7x+b=0$
$a(-3)^2+7(-3)+b=0$
$9a-21+b=0$
Let it be equation (2).
Solving equations (1) and (2), we get,
$(4a+42+9b=0)-9(9a-21+b=0)$
$4a-81a+42+189+9b-9b=0$
$-77a+231=0$
$77a=231$
$a=\frac{231}{77}$
$a=3$
Substituting $a=3$ in equation (1), we get,
$4(3)+42+9b=0$
$12+42+9b=0$
$9b=-54$
$b=\frac{-54}{9}$
$b=-6$
The values of $a$ and $b$ are $3$ and $-6$ respectively.
- Related Articles
- If roots of equation $x^2+x+1=0$ are $a,\ b$ and roots of $x^2+px+q=0$ are $\frac{a}{b},\ \frac{b}{a}$; then find the value of $p+q$.
- Find the value of p for which the quadratic equation $(p + 1)x^2 - 6(p + 1)x + 3(p + 9) = 0, p ≠ -1$ has equal roots. Hence, find the roots of the equation.
- If $x = 0$ and $x = -1$ are the roots of the polynomial $f(x) = 2x^3 - 3x^2 + ax + b$, find the value of $a$ and $b$.
- If p, q are real and p≠q, then show that the roots of the equation $(p-q)x^2+5(p+q)x-2(p-q)=0$ are real and unequal.
- If $x = -\frac{1}{2}$ is a zero of the polynomial $p(x) = 8x^3 - ax^2 - x + 2$, find the value of $a$.
- Find the values of \( a \) and \( b \), if 2 and 3 are zeroes of $x^3+ax^2+bx-30$.
- Find the values of p for which the quadratic equation $(2p + 1)x^2 - (7p + 2)x + (7p - 3) = 0$ has equal roots. Also, find these roots.
- If $\alpha,\ \beta$ are the roots of the equation $ax^2+bx+c=0$, then find the roots of the equation $ax^2+bx(x+1)+c(x+1)^2=0$.
- If both $x + 1$ and $x - 1$ are factors of $ax^3 + x^2 - 2x + b$, find the values of $a$ and $b$.
- For which values of \( a \) and \( b \), are the zeroes of \( q(x)=x^{3}+2 x^{2}+a \) also the zeroes of the polynomial \( p(x)=x^{5}-x^{4}-4 x^{3}+3 x^{2}+3 x+b \) ? Which zeroes of \( p(x) \) are not the zeroes of \( q(x) \) ?
- Find the zero of the polynomial in each of the following cases:(i) \( p(x)=x+5 \)(ii) \( p(x)=x-5 \)(iii) \( p(x)=2 x+5 \)(iv) \( p(x)=3 x-2 \)(v) \( p(x)=3 x \)(vi) \( p(x)=a x, a ≠ 0 \)(vii) \( p(x)=c x+d, c ≠ 0, c, d \) are real numbers.
- Verify whether the following are zeroes of the polynomial, indicated against them.(i) \( p(x)=3 x+1, x=-\frac{1}{3} \)(ii) \( p(x)=5 x-\pi, x=\frac{4}{5} \)(iii) \( p(x)=x^{2}-1, x=1,-1 \)(iv) \( p(x)=(x+1)(x-2), x=-1,2 \)(v) \( p(x)=x^{2}, x=0 \)(vi) \( p(x)=l x+m, x=-\frac{m}{l} \)(vii) \( p(x)=3 x^{2}-1, x=-\frac{1}{\sqrt{3}}, \frac{2}{\sqrt{3}} \)(viii) \( p(x)=2 x+1, x=\frac{1}{2} \)
- Find \( p(0), p(1) \) and \( p(2) \) for each of the following polynomials:(i) \( p(y)=y^{2}-y+1 \)(ii) \( p(t)=2+t+2 t^{2}-t^{3} \)(iii) \( p(x)=x^{3} \)(iv) \( p(x)=(x-1)(x+1) \)
- Find the roots of $x\ -\ \frac{3}{x} \ =\ 2$.
- divide the polynomial $p( x)$ by the polynomial $g( x)$ and find the quotient and remainder in each of the following: $( p(x)=x^{3}-3 x^{2}+5 x-3$, $g(x)=x^{2}-2$.
